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NATTONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNTCAT, NOTE D-107

STUDIES OF SECOND- AND THIRD-ORDER CONTACTOR
CONTROL SYSTEMS

By Irmgard Flugge-lotz and Herbert E. Lindberg
SUMMARY

The majority of this paper is devoted to the study of the response
of second- and third-order contactor systems with linear switching, that
is, switching according to the sign of a linear combination of the error
and its derivatives. The example chosen for the third-order system is
a simplified equation of the pitching motion of a missile whose control
surface takes on only two positions, full up or full down. The per-
formance of these systems during chatter operation and during their
response to step inputs is studied in great detail.

The results show that for certain rather wide ranges of combinations
of natural damping of the controlled process and step input amplitude,
there is very little difference between optimum and linear switching
response. In order to extend the range of step inputs for which nearly
optimum response can be obtained without using a complicated optimum
switching function, a quasi-optimum switching function is suggested which
requires only a two-dimensional function generator. Experiments showed
that the response with this switching function was very nearly optimum
for a wide range of step inputs.

INTRODUCTION

A control system containing one or more on-off devices 1s called
a relay or contactor control system. In most cases, the use of a relay
in the system is much less expensive and less complicated because a
relay can control large amounts of power by rather simple means. On
the other hand, the output of a relay is not proportional to the input;
that is, the input-output relation is not linear, and the behavior of
a relay control system cannot be analyzed by a linear theory. Also,
the rapid type of operation of a contactor system makes it inferior to
the smooth proportional action of a linear system. In many applica-
tions, however, the sudden accelerations and high-frequency chatter



caused by the relay are not objectionable because of the filtering action
of the rest of the system. In fact, in recent years a great deal of work
has been done on "optimum" contactor systems which give the fastest pos-
sible response to step inputs, and in this respect the contactor system
becames superior to a linear system with the same saturation values.

Earlier work (ref. 1) reported investigation of the practical use
of adding discontinuous feedback to a second-order control system. This
feedback provided a means of discontinuously varying the coefficients
of the differential equation of the uncontrolled process so that an
ensemble of eight linear differential equations was obtained. The pres-
ent paper compares such a scheme with the more conventional discontinuous
control systems in which the forcing term of the differential equation
is switched discontinuously. In making this comparison, the similari-
ties of contactor systems designed by phase-plane and frequency-response
methods are pointed out.

A well designed contactor system chatters during a large part of
the operation because of imperfections in the switching device. Two
types of error that arise during this chatter operation are studied in
detail for second- and third-order systems with linear switching, that
is, switching according to the sign of a linear combination of the error
and its derivatives. The first type of error is the high-frequency
chatter error itself. Approximate equations for this error as a func-
tion of the input and of the relay imperfections are derived for small
relay-time delays or thresholds occurring separately. Analog-computer
experiments, made to check these expressions under various conditions,
agreed very well with the theory. The second type of error occurs at
the same frequency as the input and is caused by the filtering delays
encountered in forming the error derivatives used in the switching func-
tion. A simple theory is given to explain these errors and again analog-
computer experiments give good agreement with this theory. 1In Laplace
transform notation, this theory gives an equivalent linear transfer
function for the system operating in the presence of relay chatter.
Therefore, although most of the experiments were made with sinusoidal
inputs, the resulting theory is valid for general inputs because the
law of superposition holds. This approach is somewhat similar to the
method of Lozier (see ref. 2), who replaced the relay with an equivalent
amplifier during chatter operation. However, the equivalent transfer
function given here is for a system with a different type of feedback
and is essentially different from Lozier's solution in that this trans-
fer function depends mainly on the linear switching function and its
associated filters, while the differential equation of the controlled
process determines only the range of inputs for which this theory applies.

The main bulk of the work above was done on systems with linear
switching, which were found to give quite good response. However, a
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great deal of work has been done by various people in recent years on
what is called optimun comtactor systeme. These systems give the mini-
mum response time for step inputs and are therefore superior to systems
with linear switching. The hardware necessary to form the optimum three-
dimensional switching surface (for a third-order system) is a great deal
more complicated than the simple differentiation circuits required for
linear gwitching. The obvious question is, how much is lost in perform-
ance if one chooses to use the more economical linear switching function?
To give a partial answer to this question, the step response of a third-
order system with two complex roots and linear switching is compared
with that of the same system operating with optimum switching, using an
analog-computer simulation.

This investigation was conducted at Stanford University under the
sponsorship and with the financial assistance of the National Advisory
Committee for Aeronautics. The authors wish to thank Dr. A. M. Peterson
of the Electrical Engineering Department, Stanford University, for his

continued interest and his most helpful advice on the electronic prob-
lems which were encountered during this investigation.

SYMBOLS

Some symbols have different meanings in different sections. The
context of the section will give the reader the correct choice.

A amplitude of sinusoidal input

Ay amplitude of sinusoidal input to relay (Kochenburger)

A,B,C,A;,B1,C; constants in equations (131) and (134)

a,aj,an,by,by driving terms for second-order systems

C,Cl,CQ,C5 integration constants

&y computer scale factor on controlled variable, third-order
system

c output of compensation network

D damping factor of second-order controlled process

E error (used in appendix A), y - x

e error (used throughout the text), x -y



emaxe peak value of symmetrical chatter error due to relay
threshold imperfection

emaxT peak value of symmetrical chatter error due to relay
time delay imperfection

€o integration constant

epeake peak value of unsymmetrical chatter error due to relsay
threshold imperfection

epeakT peask value of unsymmetrical chatter error due to time
delay imperfection

F argument of switching function

Go compensation network transfer function

Gp relay describing function

Gg controlled process transfer function

h vertical distance to pesk error plotted in inclined
coordinates

1 2
H used to simplify expressions, 5 (Tiw)
n

1=V—_l

k parameter in linear switching function of a second-order
system; generally, coefficient of e'

kq,ko coefficients of e' and e" respectively in linear
switching function of a third-order system

L distance (see fig. 9)

m:al/32

N,N,,No absolute values of driving terms of third-order system

n = Nl/N2 <1

OrH+H =
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2/An distance existing between switching lines due to a relay
time delay imperfectiion

P operator, é%

R output of relay (Kochenburger)

r radius from origin of inclined phase-plane axes to spiral
trajectory

ro r for v =0

T half period of symmetrical chatter oscillations

Tq duration of application of ay (sécond-order system) or

Ny (third-order system) per cycle of chatter

To duration of application of ao (second-order system) or
No (third-order system) per cycle of chatter

Te time delay of Pad€ derived circuit

Ti,T1i,To; time constants of x' and x" filter circuits

Tmm = }: TQi
m

Tpp = z Tyi
n

Tr relay time delay imperfection

TRcr critical relay time-delay imperfection

Tx',Tyv time lags of derivatives used in switching function

t real time

Vea, runaway velocity of third-crder controlled process in

camputer units



Vra runaway velocity of third-order controlled process in
problem units

X input variable, computer units

Xo ramp input

x's slope of ramp input

y controlled variable in computer or dedimensionalized units

ag constant of compensation network (Kochenburger)

Q,a] ,00 phase angle lags of filtered quantities

By = -1 sen(y'e) - oB sen(y'e’)
B,751BsoBs17,p7 constants

7n = -17 sen(ye) - oy sen(ye')

€ relay threshold imperfection

€cr critical threshold imperfection

t damping ratio of third-order controlled process

n angle between switching line and e' axis using inclined
coordinates

0 aircraft pitching angle, measured from level flight

ISPy scale factors for error phase-plane axes

My phase angle (see eq. (82))

Vv = Vl - D2

§l,§2 error in distorted phase planes

p radius of curvature of spirals at origin, a/Vl - D?

0] angle between inclined error phase-plane coordinates,

arc cos(-D)

O+ =
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T%

&

sgn( )

dedimensionalized or computer time

computer time from start of interval Ty %o poiat of
maximum chatter error, third-order system

constant of compensation network (Kochenburger)
coefficient of filtered error derivative (Kochenburger),
S
K
T for epay

time of travel on zero trajectory

switching function, takes on only values 1

controlled variable from reference 3%
vy for t =0

undamped natural frequency of rapid incidence adjustment
made by aircraft, l/sec

natural frequency of undamped third order controlled
process, computer units

radian frequency, usually of input, computer units

breakdown frequency, computer units

frequency of chatter oscillations due to relay threshold
imperfection, computer units

scale factor in equation (C3)

frequency of chatter oscillations due to relay time-delay
imperfection, computer units

algebraic sign of a real quantity; sgn f = T%r

()',()",( )™ aifferentiation with respect to T



() filtered or delayed quantity

q

approximately equal to

CONSIDERATIONS FOR DESIGNING AND COMPARING CONTACTOR SYSTEMS

There have been a great number of papers written in recent years
about different types of contactor systems, but very little has been
written about the relative merits of these various systems. In this
section several different nonoptimum systems developed by very different
techniques will be compared in order to point out their similarities and
to determine which can be classified as the best system.

Similarities of Contactor Control Systems

Phase-plane method.- One method of studying a contactor control
system is to look directly at its transient response in the phase space.
Consider, for example, the second-order system studied by Flugge-Lotz
(ref. 3). This is a zero-seeking device whose differential equation
in a dedimensionalized form is

V' + 2Dy + ¥ =-sgn(v + ky') = ¢ (1)

Notice that, in this system, the switching function is simply minus the
sign of V¥ + ky'; that is, it takes on the values -1 or 1 depending on
whether V¥ + k¥' is plus or minus. There are systems with more com-
plicated switching functions that give optimum response (ref. 4) but
for the moment only those with linear switching functions will be con-
sidered because they are more easily realized in an actual application.

Since equation (1) describes a second-order system, the phase space
becomes a phase plane as shown in figure 1(a) for k >0 and in fig-
ure l(b) for k < 0. If k <O, the trajectories do not converge to

the origin, and limit cycles of oscillatory motion as shown in figure 1(bv)

exist even for the ideal system. The ideal system is one in which the
device performing the operation sgn(v + ky') has no time delays, hys-
teresis, or threshold imperfections. Figure 1 shows this type of oper-
ation. In all of the phase-plane drawings for this system the V¥ axis
is ineclined to the V' axis by the angle o = arc cos(-D) as shown.
Using such properly inclined axes, the authors of reference 5 show that
the phase-plane trajectories become logarithmic spirals of the form

O =
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r =rge v (2)

where r is measured from the point (O,il) depending on the sign of ,
vT 1is the angle between two radii extending from (0,%*1), and v = \]1 - .

The curve shown in figure 1(a) is a typical response to an initial
error and error rate represented by point P; (since this is a zero-seeking

device, the error is identical with the controlled variable). Notice in
figure 2, which is essentially an enlarged view of part of figure 1(a),
that for the ideal system of the type k > 0 no motion is defined beyond
point A. That is, only two trajectories pass through this point, namely,
arc PAB for ¢ =1 and arc CAD for ¢ = -1; and the only paths leading
out of point A are those toward B and D. Motion cannot proceed along

the path toward B because above the switching line V¥ + k¥' = 0 equa-
tion (1) dictates that the switching function @ is -1; also, motion can-
not proceed along the path toward D because below the switching line

¢ = 1. Any point such as A is called an end point and occurs when a
trajectory such as arc PAB intersects the switching line twice in
succession on the same side of the origin. ZEvery path such as the one
shown in figure l(a) has an end point.

If the device which forms the switching function ¢ 1is allowed to
have an imperfection such as a time delay, then the motion does not stay
at point A but proceeds to point E. Here ¢ can change to -1 then back
to 1, etc., and the motion proceeds toward the origin as shown by the
solid path. The average path is along the switching line and the dif-
ferential equation of this average motion is

¥+ k=0 (3)
whence

-k
ot

Vv = ‘VAe (ll»)

Equation (4) shows that in the "end motion" V¥ tends toward zero expo-
nentially. A consideration of this motion alone would indicate that k
should be chosen small and positive. However, if motion is to proceed
quickly from a point such as Py in figure 1(a) to an end point, then it

is advantageous to increase k. Depending on the position of the expected
P;, a compromise selection of k can be made.
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For study of response to step inputs, much of the theory developed
for equation (1) can be extended to a followup system as shown in fig-
ure 3. The equation of this system is

y' + 2Dy' + y = sgn(e + ke') (5)
which can be written by substituting y =x - e as
e" + 2De' + e = x - sgn(e + ke') (6)

for a step input where x" = x' = 0. The presence of x affects the
position of the focl of the phase-plane spirals indicated in figure l(a).

Kochenburger method.- Another method of approaching nonoptimum
relay systems is presented by Kochenburger (ref. 6). This technique is
entirely different from the phase-plane method. The study of the phase
plane gives a pictorial view of the exact transient response, whereas
the method presented by Kochenburger provides an extension of the
frequency-response stability criterion of Nyquist. The basic assump-
tion is that, if a sinusoidal signal is impressed on the relay coil, the
periodic square-wave output of the relay can be replaced by its first
harmonic. This assumption becomes more and more acceptable as the com-
plexity (degree of the differential equation) of the system being con-
trolled increases (GS in fig. h) because of the filtering action of

these components.

With this assumption the action of the relay can be expressed in
terms of a "describing function" which gives the amplitude and phase shift
of this harmonic in terms of the amplitude of the impressed sinusoidal
input Ay and the relay characteristics. The block diagram is shown in

figure L4 where Gp 1is the describing function and G¢ 1is a compensation

network added for obtaining good response and stability. In order to deter-

mine the compensation network, Kochenburger uses the standard frequency-
response techniques that are used for linear systems with the exception
that the system must be examined for each value of Gp since it is ampli-

tude dependent. Absolute stability means, for example, that the polar
plot of l/GC(ﬂn)GS(hn) must completely enclose the locus of —GD(AK)
rather than merely the point -1 (see fig. 5).

Kochenburger found that if Gg = 1/(p2 + 2Dp> the compensation

network should be a lead network of the form GC = (l + Tp)/(l + éi P)

OrKH=x
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where ag 1s made as large as possible without allowing too much noise

to be transmitted. As an interesting comparison between this result and
the conclusions of reference 3, consider the output ¢ of the com-
pensation network:

__l_>Tp
c=ei+_-rp_ =e!']‘_+_(_$__ (7)
1+X1p 1+ p '

a ] a ®

In the time domain, this can be written as
c =e + T¥e! (8)

where €' is the time derivative of e filtered by the network whose

transfer function is l/(l + é; p). If the system equations are reduced

to a nondimensional form, the output of an ideal relay is simply
R = sgn c = sgn(e + T%"') (9)
and Kochenburger's differential equation of the complete system is

y"' + 2Dy' = sgn(e + T*"') (10)

A direct comparison of this equation with equation (5) shows that
what Kochenburger refers to as a "series compensation network" is referred
to as a "control function" by Fliugge-Lotz and coworkers. The only dif-
ference is that €' appears in the first and e' appears in the latter.
This is merely an academic difference because in any physical application
of the latter work the error derivative e' must be filtered by some
means. The left-hand sides of the equations differ because Fllgge-Lotz
and coworkers studied the more general case in which the output itself
appears in the equation, that is, a system with restoring force.

If one examines other examples given by Kochenburger, an extension

of this comparison can be made. For (Gg = l/ﬁ(p + l)2 he found that
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the lead network required for compensation must be quadratic. The net-
work he used had a transfer function of

(11)

2
Go = 1+ 8p + bp
1 + dp + fp2

vhere a, b, d, and f are constants. For the required phase lead,
he made 4 and f as small as possible, again without transmitting too
much noise. In the ideal case where d and f are both zero, the
campensator-relay combination gives an output of

R = sgn(e + ae' + be") (12)

which is the same form of control function which Fligge-Lotz and coworkers
found necessary for good performance with a differential equation of third
order.

Varied-coefficient scheme.- What at first appears to be a completely
different scheme for synthesizing a contactor system is presented in ref-
erence 1. The block diagram for this system is shown in figure 6. The
differential equation of this system in a dedimensionalized form is

v o+ 2D(l + Bmoy’ + (1 + 7n)y =X (13)

where

B

-1B sgn(y'e) - B sgn(y'e')
" (14)

7n = -17 sen(ye) - o7 sen(ye')

with 48, B, 17, and oY being constants. Notice that the coeffi-

cients of the differential equation are varied discontinuously, whereas
in the two previous examples a lumped forcing constant was switched.

The switching functions for B, and 7y, are each broken into two

parts, one which changes with e and one which changes with e'. It
is shown in appendix A that it is more advantageous to switch single
quantities B and » according to the following equations

O+ =
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]

B = -B sgn[y'(e + ke'ﬂ
(15)

-7 sgnl}(e + ke')]

]

4

where B and y are positive constants. If equations (15) are sub-
stituted into equation (15), the complete equation becomes

y' +2Dy' +y =X+ <2DBIY'| + 7|y') sgn(e + ke') (16)

Notice that this differential equation is somewhat similar to equa-
tions (5) and (10). However, in equation (16) the coefficient of the
switching function is a variable whereas in equations (5) and (10) it
is a constant. The input x 1is also present in equation (16) but it
will be shown in the next section that this has the same sort of effect
as the varying switching-function coefficient.

Differences in Contactor Control Systems

Although the contactor control systems previously discussed are
similar, there are differences that warrant investigation. Can it be
said, for example, that equation (16) will give better response to a
random input than will equation (5)? _To answer this, it is first nec-
essary to write equation (16) in terms of the error e by substituting
Yy =X -e:

e" + 2De' + e = x" + 2Dx' - <2DBly'l + 7|yi)sgn(e + ke") (17)

Consider now that this system is operating in a region where input
velocities and accelerations are small, or |x" + 2Dx'| < opply'| + ylyl.
In fact, if this inequality is not true, the output will soon begin to
diverge from the input x. This is discussed in great detail in ref-
erence 7. If the inequality does hold, then the terms governed by the
switching function sgn(e + ke') predominate and determine the sign of
the entire right-hand side of the differential equation. Under these
conditions the error is soon driven to zero and it has been shown both
analytically (ref. 3, p. 29) and experimentally by Lindberg (see ref. 1)
that the error "chatters" about zero with a small amplitude and very
high frequency relative to x or y due to relay imperfections.
(Appendix B gives a detailed study of the chatter error of control
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systems whose switching function is of the form used in equations (5)
and (16). Reference 1 contains a study of the chatter error of equa-
tion (13) using equation (14).) Because the frequency is high and the
amplitude very small, quantities such as x', x", and y may be
regarded as constants during a few error cycles, 2DB|y'| can be con-
sidered small compared with 7[y[, and the equation of motion becomes

e" + 2De' + e = a) if e +ke' <O
(18)
e" + 2De' + e = -by if e +ke'>0
where ay and bl are positive constants.
Similarly, equation (5) can be transformed into
e" + 2De' + e = x" + 2Dx' + x - sgn(e + ke"') (19)
Again, if the error is not to diverge, |x" + 2Dx' + xl <1 and the
equation of motion becomes
e + 2De' + e = a, if e +ke'<0
(20)

e" + 2De' + e = -bo if e +ke' >0

Notice that these equations are identical to equations (18), except
for the values of a;, ap, b;, and b, and perhaps the value of k.

In fact, these equations would result even if the switching function were
something more complicated such as sgn(e + kle'|e'D because the chat-

ter response is close enough to the origin of the e,e' phase plane
that any complicated switching function can be replaced by a straight
line, and hence the switching function reduces to sgn(e + ke') (see

fig. 7).

The parameters of these equations could conceivably be very dif-
ferent between the two systems and within each system itself at differ-
ent times depending on the instantaneous values of x, y, and their
derivatives. It will be shown later that the amplitudes of the chatter
errors for equations (18) and (20) are approximated by

O+ + =
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| L (€}
e = — (£ 2
‘ma.xe 2a(k) ( l)
for a relay threshold imperfection of e and
2
1
2k - =
le gy = 2 k-3 (22)
maxp ~
2 \k - TR

for a relay time-delay imperfection of TR if each occurs separately.

In each of these expressions, a represents the driving-force amplitude
appearing on the right-hand sides of equation (18) or (20), such as a;

and bl’

Equation (22) is a simplified version of the complete expression
for the chatter error due to a relay time-delay imperfection which is
discussed later. This simplified version is valid only when the posi-
tive and negative driving-force amplitudes are of equal magnitude (e.g.,
a] = by in eq. (18)). All the arguments concerning equation (22) that

follow here would apply equally well if the complete expression were
used. Equation (21) for a threshold imperfection is complete and is
valid for any wvalue of a; and bj.

In an actual system, both threshold and time-delay imperfections
occur together and since a appears in the denominator of equation (21)
and in the numerator of equation (22), the error amplitude tends to
depend only slightly on a. The error depends a little more on k, but
even this dependence is secondary to the dependence on relay character-
istics because k has a strong influence in only one of the two expres-
sions for error. It must then be concluded that during chatter response,
that is, when the input is varying slowly as indicated by the inequalities
that were necessary for the formulation of equations (18) and (20), the
system response depends much more strongly on the relay characteristics
than on the controlled-process equation, feedback, and switching function.

Design Criterion

How, then, should one compare different system equations to deter-
mine which gives the best response to an undefined input? First, recall
that the errors during chatter operation are very small. As was men-
tioned earlier, there is a large class of applications where this type
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of operation is very satisfactory, and the range of inputs for which

chatter occurs might be called the "region of satisfactory response." -
Hence, one measure of merit for a system is that it have the largest

region of satisfactory response consistent with its saturation values.

From this standpoint equation (5) can be considered to be a better sys-

tem than equation (16). To see this, first recall that the region of
satisfactory response for equation (5) is defined by

|x" + 2Dx' + x| <1 (23)

where the saturation value of this system is unity for the units chosen.

To find the region of satisfactory response including saturation
effects for equation (16) all of the variables that are produced by the
component whose saturation value is under consideration must be gathered
together. For equation (16) this means the quantities that exist at
point m in figure 6 where a motor or amplifier, for example, would sat-
urate. Equation (17) is now written

OrH =

e" + 2De' +e = x" + 2Dx' + X - [x + (2D6ly'| + 7|y1)sgn(e + ke'ﬂ (2k)

where the terms in the brackets are the same terms as those on the right-
hand side of equation (16) and are the quantities at point m. The ine-
quality to insure chatter operation for this system is defined by

X" + oDx' + x| < (25)

X + (2DB|y'| + 7|y|)sgn(e + ke')

This must necessarily give the same or (usually) a smaller region of
satisfactory response than that defined by equation (23) because the
right-hand side of equation (25) is a complicated expression which must
be equal to or less than unity if the systems of equations (5) and (16)
are to have the same saturation values. Therefore, from the standpoint
of providing the widest region of satisfactory response, the system of
equation (5) is superior to that of equation (16).

Nothing has been said yet about what control function would give
better response to a random input. During chatter operation the choice
of different control functions is equivalent to changing k. In the
discussion of equations (21) and (22), however, it was seen that changing .
k had a secondary effect on an already small error. Thus to compare
or design a control function it is necessary to examine responses to
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inputs which fall in part, at least, outside the region of satisfactory
response. Also, the tesi lnput must fall largely within the region of
satisfactory response in order to insure that the test will not degen-
erate into a simple examination of saturation operation. The most easily
produced inputs that satisfy these requirements are discontinuities, the
simple step function being the most cammonly used.

Therefore, after a system has been designed to take full benefit
of its saturation values, a rational approach to designing it to follow
random inputs is to arrange the system to follow a step input in spite
of the fact that superposition does not hold.

APPROXTIMATE EXPRESSIONS FOR RELAY CHATTER ERRORS

It was mentioned several times previously that for slowly varying
inputs the error of a contactor system chatters about zero at a frequency
which is very high compared with the input frequency. Two main causes
for this high-frequency oscillation are relay threshold and time-delay
imperfections. Exact expressions for the amplitude and frequency of
these oscillations would be cumbersome to the point of being useless.
Approximate expressions for small imperfections are quite simple for
second- and third-order systems, however, and give a good indication of
how these errors depend on the system parameters.

Second-Order Systems

Consider first the second-order systems of equations (18) and (20).
For concreteness, let by = 0.8, a; = 2.1, b, =0.2, and a, = 1.2.

The e,e' phase-plane trajectories for e" + 2De' + e = a are spirals
with their focus at a. Figure 8 shows a sketch of the phase-plane
meshwork for each of the chosen examples. The top two sketches in fig-
ure 8 show a good portion of the phase-plane portrait and show well the
difference in curvature effected by the various values of a and b.
If one confines his attention only to that portion of the phase plane
very close to the origin, as shown in the bottom sketches of figure 8,
the differences in curvature are not nearly so important. Experimental
evidence indicates that the error and error rates are small enough that
an error study could indeed be confined to the area of the phase plane
close to the origin.

In fact, the radius of curvature of the trajectories near the origin
is so large compared with the error resulting from a relay threshold or
time delay that it becomes difficult to draw an error limit cycle to
scale. Figure 9(a) is a sketch of an error limit cycle caused by a
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switching-function threshold and figure 9(b), of an error cycle caused
by a time delay. In both figures the angle between the switching line
e + ke' =0 and the e' axis is given by Fliigge-lotz (ref. 3) as

2
n = arc tan Ei_—:ig_ (26)

Relay threshold imperfection.- For threshold errors the single
switching line is replaced by two lines parallel to 1t which intersect
the e axis at *e (fig. 9(a)) where ¢ 1is the threshold. These lines

intersect the e' axis at :t%. The very small arcs of the phase-plane
spirals are replaced by arcs of circles with a radius equal to the radius

of curvature of the spirals at the origin, namely o = a/Vl - D2. The
requirement that the spirals intersect the e axis with a tangent
parallel to the e' axis (i.e., where the error velocity is zero,

the error must have an extremum) is very nearly satisfied if the cir-
cles are drawn with their centers on a line which is perpendicular to
the e' axis and which passes through the origin. This approximation
makes the arcs intersect the switching lines at the same points that
the switching lines intersect the e' axis, which is consistent with

the statement (ref. 3) that these two types of intersections do occur very

close to one another. Because these arcs are so flat, the maximum error

it
can be taken as h/cos(o - 90°) = hidl - D°. From the geometry of the
construction

2 2 2
L= L°¥1 - D
~ 55 = S5 (27)

and the maximum error due to a threshold imperfection is

®max = 5;(2)2 (28)

Relay time-delay imperfection.- The arguments for a time-delay
error are similar except that the new switching lines are inclined at
an angle 17 - VIg from the e' axis and the distance between them is

given by Fliigge-lotz (ref. 3, p. 96) as

OrHXE
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2an =~ 2aTp sin 7 (29)
for a small time delay. The distance 1 becomes

alp sin 7
L = - zB.TR (y))
51nin - VTRi

and the error due to a time delay is

2
4y
Cmaxy, = aeR (31)

Notice that for threshold errors a appears in the denominator
while for time-delay errors it appears in the numerator. This is to be
expected since the magnitude of a represents the amount of correcting
force being applied discontinuously. For a threshold imperfection it
is reasonable to expect that, if the correcting force is larger, the
resulting error will be smaller because the high forces will hold the
error close to the band of error caused by the threshold of measurement.
On the other hand, if the error is caused by a time delay it would be
desirable to keep the forces at a low level because they are acting
through a given time in an undesired direction, and hence the error
increases as the forces increase. In either case the effect is small
relative to the squared time delay or threshold. Also, in an actual
system both time delay and threshold occur together thus making the
effect of the value of a still less important.

Alternate derivation.- Although the above derivation gives one a
good graphical picture of the nature of the approximations made to find
a simple expression for chatter errors, the procedure was rather lengthy
and is not easily extended to higher order systems. The same results
are obtained if one makes the approximations by neglecting terms in the
differential equation itself. Because the chatter frequency is quite
high, it is possible to neglect terms containing e and e' and retain
those containing e". This reduces

e" + 2De' + e = -a sgn(e + ke') (32)



to

e" = -a sgn(e + ke') (33)

To see that this approximation is the same as the geometrical approxi-
mations made above, recall that the differential equation which gives
circles as trajectories in the phase plane (one of the assumptions made )
does not contain an e' +term. Therefore, the assumption that the phase-
plane trajectories are circles near the origin is equivalent to dropping
the e' term. But, neglecting higher harmonics, e -is related to e'
by the same factor (namely, the frequency) that relates e' to e";
thus, if one is to neglect e' and retain e", one can certainly neg-
lect e at the same time. This, of course, yields equation (33).

By inspection of the differential equation, the chatter error for
equation (53) for a threshold or time-delay imperfection is symmetrical;
that is, the negative half cycle is merely the reverse of the positive
half cycle as shown in figure 10(a). The initial and final conditions
for the positive half cycle with a relay threshold imperfection (assuming
the imperfection is also symmetrical) are

(e + ke'); g = ¢ (34a)
e(T) = -e(0) (34D)
e'(T) = -e'(0) (3ke)

Also, the equation of motion for the first half cycle is

e = -%-aTz + C1T + Cp (35)

where Cl and 02 are constants of integration. Substituting equa-

tions (34) into equation (35) gives the maximum error for the positive
half cycle, an expression which is identical to equation (28).

Figure 10(b) shows the actual waveform resulting from equations (34)
and (35). It is interesting to notice that the switch points occur at
e = 0, which is consistent with the way in which the switch points were
drawn in the phase-plane study of figure 9. This is due to the quarter-
cycle symmetry of the chatter error resulting from equation (53). That
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is, the homogeneous solutions to this equation are parabolas which have
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be shown that the chatter errors for the equation

e" + e = -a sgn(e + ke') (%6)

also have quarter-cycle symmetry and again the switch points occur at

e = 0. This is because the homogeneous solutions to equation (36) are
sinusoids, which, of course, have a line of symmetry. The exact chatter
errors for equation (32) would not have this type of symmetry, however,
because the damping term 2De' does not allow any symmetry in the homo-
geneous solution.

For a symmetrical relay time-delay imperfection Tr the chatter

error for equation (33) is again symmetrical as shown in the sketch
given in figure 10(c). For the positive half cycle the switching func-
tion passes through zero at T - Ty (indicated by a cross in the

figure):
(e + ke')rpp, = O (37)

This condition must be applied at 7 =T - Tr rather than at T = -TR

because the latter value of T does not fall within the interval for
which equation (35) applies. Equations (34b), (3kc), and (35) are the
same for both threshold and time-delay imperfections. Combining these
with equation (37) the maximum error for a time-delay imperfection is
found to be

k 1T2
1 2| " 2 "R
®maxq = 3 aTg _E_:_TE— (38)

Again, the actual switch points occur at e = 0 as shown in figure lo(d).
Notice that the term in parentheses in equation (38) did not appear in
equation (31). For very small values of TR this term approaches unity

so that in this case it might be neglected. This would correspond to
the approximations made in equations (29) and (30). The error maximum
given by equation (38) therefore is more complete and accurate than
equation (31) because fewer approximations were made in deriving it.
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A rough indication of the range over which these approximate expres-
sions (based on eq. (33)) for error apply can be given if the chatter
error is replaced by its first harmonic. Its frequency for a threshold
imperfection is

1l gqak
(1)€=2T[§——2€—- (39)

Also, for the first harmonic,
(e")pea_k = (aﬁ')peak = ((Dze)peak ()4'0)

Recall that the basic assumption made in deriving equations (28) and (38)
was that e" >> 2De' >> e. It might then be expected that the approxi-
mate expressions for error would be accurate to about 10 percent if

28k 5 10(2D) = 20D (41)
2e

Similarly, for a time delay

> 20D (42)

Solution for unequal driving terms.- In all of the preceding dis-
cussions it was implicitly assumed that the positive and negative driving
forces were equal in magnitude. It is only a very special case when
they are equal because the relative magnitudes of these terms are con-
tinuously changing because of terms which appear on the right-hand side
of the error differential equation, such as x" + 2Dx' + x 1in equa-
tion (19). In the case of a threshold imperfection, equation (28)
applies even if the positive and negative driving terms differ; that is,
the error for each half cycle can be found by applying this equation
for each value of the driving force. This procedure is valid because
the initial conditions for any half cycle are merely the negative of the
final conditions independent of the driving term; that is, C, =0 and

Cy = e/k in equation (35) for threshold imperfections.

Or K =
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For time-delay imperfections, however, this 1s not true because

k - &
5 IR

Cy = aTg| ————
1 4

and depends directly on a. In this case then, the error must be com-
puted on the basis that it repeats itself every cycle rather than every
half cycle. This can be done by setting up equations similar to equa-
tion (34) that match the end conditions at both the positive and nega-
tive switch points. However, in the third-order case this same sort of
problem will come up and it will be found that a semigraphical method
of finding the error is easier to apply and visualize. To acquaint the
reader with this method, it is also used to solve the second-order prob-
lem (see appendix B). This method follows very closely the procedure
used in finding shear, moment, slope, and deflection diagrams for simple
beams. Appendix B shows that the maximum error in each interval is

L1 2 )
cpeatn, = § mm? (18 | T2 - Bz - 1)
> (43)
1. ,.2(1+ )2(k - %’TR i a1TR/) - 1
epea.kT2 - -B-alTR mm \k - TR T T2 ( m m)<k T2 TR)
v

where m = al/ag. For m = 1 these equations reduce to equation (38).

Notice that in addition to an oscillatory error, represented by the first
terms of equations (43), there is a bias error represented mainly by the
second term. 1In fact, for the small values of Tp that are being con-

sidered, the bias error is larger than the oscillatory error. The value
of k is usually much larger than TR because k must be chosen large
enough that the system will respond well to a good range of step inputs
(k = 0.3 is a typical value used in the experiments). This same type
of error will be found to occur even more generally in third-order
systems.

It is rather curious to note that while a change in the level of
the driving forces (1.e., both a; and ap, are changed by the same

factor) has the opposite effect on the overall chatter amplitudes for
threshold and time-delay imperfections, the ratio between the positive
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and negative peak errors is the same for either threshold or time-delay
errors (neglecting the blas term in the time-delay case). That is,

e
peakmq a
/_____;L I (Lk)
\epea_kT2 al
Oscillatory part

in either case. This observation has rather dubious meaning because the
presence of the bias term seriously affects what one means by "positive"
and "negative" peaks. But it does aid in picturing the motion because
the level of the bias line can be observed by the change from negative
to positive curvature, or vice versa, at this point. Thus in figure 11,
which shows the response of equation (5) (or, more properly, eq. (45))
to an input of x = A sin wr, the effect of the continuously changing m
is clearly evident, and also one can picture where the bias line (which
is approximately a sinusoid at the input frequency in this case) lies.
This error at the input frequency is not caused entirely by the bias
error discussed here and the additional error is discussed in the sec-
tion "Simple Theory for Low-Frequency Errors That Occur in Presence of
High-Frequency Relay Chatter."

Analog-computer simulation of relay time delay.- An analog-computer
simulation was made of the second-order system given by

y'(r) + 2Dy (7) + y(7) = a sgn[é(f - TR) + ke'(T - T;O] (45)

The circuit for this simulation is shown in figure 12. Notice that the
time delay TR was effected with the Pade type circuit discussed in
reference 1. In order to take into account the inherent delay of the
relay used, a study was first made of the equation

y'(%) = 2 semle(r - Tg) - ke'(7 - 1x)] (46)

for which the exact expression for chatter error is available. With the
input x held at zero, experimental results of peak errors were found
for a series of Pade circuit time delays T.. These results were then

compared with the curve of peak error versus time delay given by equa-
tion (38) and it was found that if an inherent relay delay of 0.015 sec-
ond (computer time was the same as actual time for the units chosen) is

OHH=x
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added to the Padé time delay T., the experimental results agree very
closely with the errors given by this equation for k = 0.5 and 0.25.

These experiments were repeated using the more complete equation (45)

with D=0.5 and x =0, again for k = 0.5 and 0.25. The results are
tabulated in table I along with the error calculated using equation (38)
with TR = T. + 0.015. The agreement between theory and experiment is

quite good except for large values of Tg. Also, a plot of theoretical

and experimental errors versus time delay in figure 13 shows that the
theory diverges from the computer results in a manner predicted by equa-
tion (42). For example, at Tg = 0.120, equation (42) indicates that

the difference between the approximate error of equation (38) and the
actual error should be about 9 percent while figure 13 shows this dif-
ference to be 10 percent.

Third-Order Systems

Relay threshold imperfection.- Consider the third-order differ-
ential equation :

y" o+ 29y" + 0%y = Nsen(e + kye' + kpe") (A7)

which is not reduced to the minimum number of parameters as was done in
the second-order case; however, the units are carefully considered and
fully discussed in appendix C. Equation (47) might be considered a
simplified differential equation for the longitudinal motion of an air-
craft or missile with natural frequency « and damping ratio ¢, where
Y 1is the missile angle with respect to some average flight path. In
this case the coefficient N would represent the effect of same con-
trol surface on the motion of the missile. The position of the control
surface is reversed discontinuously as dictated by the linear switching
function in equation (47) which can be made into a differential equa-
tion in the error e by substituting y = x - e as was done for equa-
tion (5):

’

Zet = x" 4+ 2tax" + 9%x' - N sgn(e + kje' + kge") (48)

e’ + 2t0e" + Q

As was the case for second-order systems, if the error is not to diverge,

Ix"’ + 2tax" + 0°x'| < N. When this inequality holds, equation (48)
can be written
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e" + 2tQe" + Q%'

]

Ny if e + kKje' + kge" <0

(49)

e™ + 2t0e" + 0% -No if e + kje' + kpe" >0

"

where N; and N2 are positive.

To find the amplitudes of the chatter errors of equation (49), first

consider the very special case in which N; = Np = N (i.e., x = Constant).

Also, assume that the frequency of the chatter errors is much higher than
the natural frequency  of the missile (the subsequent derivation veri-

fies this to be a valid assumption) so that e >> 2(Qe" >> Q%e'. Equa-
tion (49) can then be approximated by

e™ = -N sgn(e + kje' + kge") (50)

As for the second-order system, in the case where the positive and nega-
tive driving terms are of equal magnitude, the error during application
of the negative term is just the negative of the error during application
of the positive driving term as shown in figure 14. This is because
nothing in the differential equation gives preference to either a posi-
tive or negative error. Thus one needs to consider only one-half cycle
in order to determine the motion. The initial and final conditions for
i the half cycle for which a negative driving term is applied are

~
; (e + kje' + k2e">1_=0 =€
e(T) = -e(0) $ (51)
e'(T) = -e'(0)
e"(T) _ _en(o) J

\ The equation of motion for this interval is

R RO S -
e === N17 + 5 C37° + Cp7 + C3 (52)

O+ =
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where Cl, Co, and 03 are constants of integration. If equations (51)
are substituted into equation (52), these integration constonts and T
can be found. The maximum error for this half cycle is then found to be

e lmaxe = X2 = o3| (53)

where T is to be found from
o A, (5h)

If one would like to have an explicit expression for |elmax€’ notice

that, since € 1s very small, T as solved from equation (54) will
also be very small. But if T 1is very small, the first term in this
equation can be neglected relative to the second. Hence one can take
T ~ 2¢[koN and

3
=L (e

The magnitude of the discrepancy that results fram neglecting the
first term of equation (54%) is very conveniently seen if one plots the
two terms on the left-hand side against T as shown in figure 15. A
value of ko, = 0.10 was taken for this plot. This is a realistic value

as is seen in the section "Step Response of Third-Order Contactor System
With Two Complex Roots."” If T is to be a solution, then the difference
between these curves must be equal to 2€/N. In the figure, this means

that the height measured from the T3l12 curve to the KkoT curve must be
equal to 2e/N. If one chooses to neglect the cubic term, this height is
measured from the T axis instead. Inspection of the curves shows that
this approximation gives very little error in T for values of Ee/N up
to 0.02, and the error at 2€/N = 0.035 1is still not too large. It is
even more interesting to notice that figure 15 shows very clearly that
equation (54) has a positive root for T only for values of 2e/N less
than a certain "critical” value. That is, since 2¢/N is always measured
from the T5/ 12 curve to the koT curve, the only positive values for
2¢/N 1lie in the shaded area between the origin and the intersection of
the two curves. The maximum value of 2¢/N in this area is the "critical"
value. For larger values, equation (54) has no real positive root for

T and no periodic motion exists. A similar situation arises for a
time-delay imperfection and it was observed experimentally that for
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time delays greater than some critical value the error diverged. For
the threshold-imperfection case, it can easily be shown that the critical
value for € is

me, /2 (56)

m
1]
WM

cr
The half period T at this critical condition is simply

Ter = 2|[kp (57)

This means that, no matter what the other parameters are, the lowest

possible chatter frequency fep = is determined solely by the

cr

choice of ko. This frequency is rather low; therefore, it can be

applied only to equation (50) from which it was derived and not to equa-
tion (49) because the lower error derivatives are no longer negligible,
although it was observed in an analog simulation that a critical time
delay also exists for equation (49).

Returning to the discussion of the chatter error for small values
of €, figure 14(b) shows the shape of the error cycle during the inter-
val just considered as found by actually solving equations (51) and (52).
Notice that the initial values at the beginning of each half cycle, that
is, €y and C5 (where Co = O) in equation (52), depend on the value

of N as shown in equations (53) and (54). Hence when Ny # N, one

cannot use equation (55) to find the error of each half cycle separately
in the same manner as was done in the second-order system with a thresh-
0ld imperfection.

Without the symmetry argument that was used in the case where
Ny = Ny, conditions must be matched at both switch points and eight

equations with eight unknowns would result, two of the equations being
cubic. This is the point where the semigraphical method, presented in
the second-order system with time delay, will very definitely be an aid
by providing a systematic method of solving these eight equations.
Again, the details are presented in appendix B and only a rough outline
will be given here. In essence, the method involves finding the ratio
of time intervals during application of positive and negative driving

force and the constants of integration for e" and e' by imposing the

OHKF=
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condition of periocdicity on e", e', and e, respectively. The period

of the motion and the integration constant for e are then found by
imposing the switching conditions

(e + ke’ + kee")T_o = -€ (58)

and

(e + kje' + k2e") € (59)

T=‘I‘l B

at the beginning and end of interval T,, respectively. Figure 16 shows
"' and the resulting error. The equation for T; that
results from equations (58) and (59) is

a plot of e

N2 3
—EN; 17+ kN{Ty = 2¢ (60)

which, of course, is just a more general form of equation (54), and it
is to be expected that the "critical threshold" consideration will apply
here also. The procedure is identical to that used for equation (5&)
and the critical threshold is

N
or = 272 12/° (61)
where
n = N1 0<n<1 (62)
No

As it stands, equation (61) might lead one to believe that making the
driving terms N; and N, more different, that is, making n smaller

(see appendix B), has a stabilizing influence because this tends to make
€.y larger. This is misleading because from equations (48) and (L49)



Nl + N2 = 2N (63)

so that equation (61) can be more properly expressed by

20n_ 2y 3/2 (64)

€er T4 103

This form is more easily interpreted because none of the other param-
eters in the equation change when n changes. It shows that making n
less than 1 makes €., smaller and therefore does have the destabilizing

effect that one might expect, but the reduction in €.,, occurs very

slowly at first. For instance, at n = 0.49, ecpr 1is reduced from its
value at n = 1 by a factor of only 1.40/1.49.

As in the case for n = 1, it is reasonable to neglect the first
term in equation (60) for small values of € so that an explicit expres-
sion for peak error can be obtained. With this approximation, it is
shown in appendix B that the peak errors are expressed by

1+ 20\3/2(1 + n\2 1 3 [1-n2\k1/e)\?
ePeake”( 3 ) (2n >3N2<lf_g) '(TrTn—>T<ki) (65)

There are several interesting features to this motion. First,
both of the peak errors given by equation (65) occur in the interval of
the driving term of smaller magnitude, regardless of whether it is
applied as a positive or a negative term. In the derivation of this
equation, Ny was taken as the smaller driving term. As shown in fig-

ure 16, N, was applied as a positive term. Therefore, if one wishes

to find the error in the case where the smaller N 1is applied as a neg-
ative term, then a negative sign must be attached to the error that is
given by equation (65). Also, this equation shows that, as in the case
for second-order time delays when n # 1, a bias error exists in addi-
tion to an oscillatory error. There are three distinguishing features
to this bias error: (1) It takes on the sign of the driving term of
larger magnitude, (2) for the small thresholds considered here, it is
considerably larger than the oscillatory error, and (3) it is not equal
simply to the integration constant for e as was found for a second-
order system, because part of this constant 1s absorbed into the first
or oscillatory term.

O+ =
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Relay time-delay imperfection.- For the special case where Nj = Ny,

the solution for peak errors for a time-delay imperfection follows, as
for the second-order system, quite closely to the error derivation for
a threshold imperfection. The maximum error is again given by equa-
tion (55) except that the half period T is now to be solved from

™ (1o2 Lopo 1
—1—2- + (E TR - RlTR + k2>T = 2TR(€ TR - -é leR + ke) (66)
For very small values of Tg the peak error is given approximately by

~

emaxT NTR5 (67)

N

There is a critical time delay for equation (66) just as there was
a critical threshold for equation (54). It is not difficult to show that
the equation for this critical time delay TRcr is

3/2
2(1 2 _ = (1 2 _ 1
3<2 TRcr leRcr + k2> (6 TRcr 2 leRcr + kE)TRcr

but finding a solution to this equation is reasonable only for specified
values of k; and ko, and even then a sixth-order polynomial must be

solved.

For the case where Ny # N, it will be assumed at the outset that

a time delay can be considered as a variable threshold. This in itself
is not an approximation, but it provides a means of meking an approxi-
mation that greatly simplifies the error derivation. This restricts

the solution to very small imperfections, but then equation (49) approx-
imates equation (48) for only small imperfections. Denoting by F the
argument of the switching function, its time derivative is

F' =e' + kje" + kpe'™ (68) |

At the instant before a switch point from N, to Ny (Just before the
start of interval T; in fig. 16) this becomes
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1

= 1 ~
= —l?-(Tl - T2) - kl<§ TlNl) - ko, =~ -kN, (69)
so that the equivalent threshold at this switch point is

The equivalent threshold at the other switch point is similarly approxi-
mated by this same expression with -N, being replaced by Ny in

equation (70). Using these thresholds, the equation for Ty is

O K=

N, 2 N
-Ta; T + kAT = kT <l + —%) (71)

The computation of a critical time delay using this complete cubic equa-
tion would not be too profitable because, for time delays large enough
that the cubic term becomes important, none of the other approximations
already made are reasonable. Neglecting the cubic term, this equation
can be solved explicitly for T, and the peak error becomes

epeaky = ;(l +3 2:1)5/2(12; n>2% TR - (l_éie)klNTR - (1 - n)k2NT (72)

Notice that terms such as ————— that appeared in the second-order
k-T
R

time-delay case do not appear here. These terms are absent because of
the approximation made in equation (69). However, if this approximation
is not made, the expression for the peak errors becomes quite lengthy,
and for small values of TR unnecessarily lengthy. If one desires to

find the effect of the neglected terms for larger values of Ty, then

he can go back to equation (66) for the case where N; = N, and no
approximations are made. This will give the trend of the effect of Ty
becoming large relative to ky and k2 even in the case where Nl # N2'
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Analog-computer simulation of relay time delay.- Equation (47) was
set up on the compulter as shown in figure 17 with the exceptian that the
Padé time-delay circuit was inserted between the output of amplifier 19
and the relay. The first series of tests were run with Ny =Ny = 40

and the results are tabulated in table II along with the peak error pre-
dicted by equation (72). The agreement is quite poor except that a loga-
rithmic plot of the experimental error showed that it can be expressed
as a constant times the third power of the time delay. The inherent
delay of the relays was again taken as 0.015 second for this comparison.
These experiments were repeated using the third-order system described
by equation (49) with N1 = No and the resulting errors were compared
with the error predicted by the exact equations (53) and (66). The
agreenent was again poor and it was concluded that these errors were so
small and depended so strongly on the time delay that considerable com-
puter error crept in.

The bias errors for experiments where Ny # N, were relatively

large, however, and the agreement with equation (72) was quite satis-
factory. Table III lists the experimental bias error and the bias error
predicted by this equation for several values of the various parameters.
Figure 18 shows an example of the bias error resulting from changing n.
In running this test N, was changed back and forth from 10 to 40

(Nl = 40 throughout the test) so as to reduce the effect of the com-
puter drift.

SIMPLE THEORY FOR LOW-FREQUENCY ERRORS THAT OCCUR

IN PRESENCE OF HIGH-FREQUENCY RELAY CHATTER

In the previous sections the only error mentioned is the high-
frequency chatter error that exists because of relay imperfections. A
closer study of the response of these contactor systems for slowly varying
(slowly, that is, with respect to the chatter frequency) inputs for which
chatter occurs shows that another error very different in origin and
nature exists at the same time. This additional error is at the fre-
quency of the input and can, in fact, be found by the consideration of
an equivalent linear system.

Second-Order System

Error equation.- First consider the second-order system of equa-
tion (5). For a study of the low-frequency error (this is referred to
as a low-frequency error because the chatter error is at a much higher
frequency), assume that the relay imperfections are so small that
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chatter errors become unimportant. TInstead, take into account the delays
that are encountered in forming the error derivative e'. Recall also

that e' =x' - y'. If in obtaining this difference more delay is encoun-

tered in obtaining x' than y' or vice versa, it can be shown that a
noticeable error will occur.

Suppose, for example, that y' is available with no appreciable
delay but that filtering is necessary on x'. Thg analog-computer setup
used (see fig. 12) gave a transfer function for X' of the form

oS ]
X - 2 (73)
(1 + Typ) (L + Top) - . - (1 + Typ)
where X' is the filtered x'. Values of n from 1 to 3 were found

satisfactory, depending on the device used to provide the input x. It
should be mentioned that figure 12 is a circuit used in later studies in
which both x' and y' were filtered by the same amount.

The basic assumption to be made in order to find the low-frequency
errors is that, since the system is chattering, the argument of the
switching function is oscillating about zero and can be set equal to
zero for the purpose of finding the low-frequency solution. For equa-
tion (5) this means that

e + k€' =0 (74)

where
g =X -y ('75)

The delayed-error derivative €' is given in equation (74) because this
is the quantity that the system actually uses. Rewriting this equation
in terms of the actual error e, it becomes -

e + ke' = k(%' - x') (76)

Considering sinusoidal inputs x = A sin wr, the phase lag between
X' and x' is

@ = }; arc tan(Tjw) (77)

OrKH=
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which for small values of T;0 (in forming x', the filter time con-
stants T4 a&are madc a5 small ac poosikle with

noise) is simply

o~ Z T (78)

The attenuation between X' and x' for small values of Tiw is

%—:— ~1- % Z(Tiw)e (79)

n

The difference between X' and x' 1is then

X' - x' = Aol - % Z(Tiw)e cos|wr - E(Tim) - Aw cos afT (80)

n n

Defining H by

==
w
Pl

z(Tia))2 (81)

n

equation (80) can be written

(1 - H)cos(wr - a) - cos ar

[(l - H)cos a - ]]cos wr + [(l - H)sin cx,]sin wr

V(l - H)2 +1-2(1 - H)cos a cos(uﬂ' - “l)

V1 - H\/Q(l - cos a) + [1{2/(1 - Hi‘ cos(a)'r - pl> (82)
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If H 1is small, this equation reduces to

%'—;wi'. ~ [l - (H/2§] 2 sin(a,/2)cos<a)7 - “l) (83)

or

X' - x' =~ Aw -L]: Z(Tim)2 2 sin Z(Tiw>/2 cos(an - “l) (84)

n n

In fact values of Z(Tiw)g consistent with the rest of the system are
n

so small that the effect of attenuation between X' and x' will be

neglected, Making this approximation and noting that Z -2]-‘-'1‘10) is

n
small, equation (8Y4) becomes

X' - x' = A(L)E T s - E T 8
x Z jcos|wr > "3 ( 1&) (85)
n n
Substituting equation (85) into e"‘quation ('76) gives

e + ke' = —kAw® 2 T;cos |wT -g Z(Tiw) (86)

n n

|-

Notice that this is merely the differential equation of a linear forced

vibration problem and it can be solved very simply by a number of standard

methods., The steady-state sulution is

2
~khAw ZTi : -
ﬂ 3
2

where

6 = arc tan(kw)

OHMH =X
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Computer simulation for sinuscidal inputs.- In order to check
equation (87), the second-order simulation of figure 12 (without the
time-delay circuit and with no y' filtering) was run using sinusoidal
inputs generated in the computer. The agreement between computer results
and the equation were within computer and instrumentation accuracy as
shown in table IV. A typical computer response is shown in figure 19.

Third-Order System

Error equation.- An example of a third-order system, taking into
account the filtering delays, can be written

y'" o+ 2t0y" + ng' =N sgn(e + kl€' + kzg") (88)

In a manner analogous to the second-order example, consider the case
where y' and y" are available directly and filtering is required on
x' and x". The analog-computer circuit of equation (88) is shown in
figure 17. The broken-line y' input shown in figure 17 was used for
these experiments and the filtering capacitors Co, and C) across
amplifiers 4 and 18 were set to zero. This circuit-gives a transfer
function for X' of the form

- 2 (89)
(l + T11P> (l + T12p> ... (l + TlnP)

x |2

Similarly, X" is defined by
'}\(IH 3 P2
x (1 + TzlP)(l'+ Tézp) C e (l + szp) (50)

As for the second-order system, during chatter operation the argument
of the switching function oscillates about zero and for very small relay
imperfections

e+ k& + k" =0 (91)

Also, the actual error derivatives e' and e" are related to €' and
~rtt

€ Dby

&' = e' + X' - x'
. ' (92)
~1 - e" + x" - xl

so that equation (91) becomes

e + kje' + kpe" = k(X' - x') - k(X" - x") (93)
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The procedure for finding the terms on the right-hand side of this equa-
tion for x = A sin ot is identical to the procedure used in the second-
order case so that

X' - x' ~ M Z Tqjcos({wT - g -% Z Ty 0 (9%)
n n
and
’in - x" =~ —A{.DB Z Teisin wWT - g - 32'. Z Tgi(l) (95)
m m

If equations (94) and (95) are substituted into equation (93), the
resulting differential equation is again merely a linear forced vibration
problem. The resulting error is a sinusoid at the input frequency. This
agrees very closely with the observations of the following experiments.

Computer simulation for sinusoidal inputs.- Experimental verifica-
tion of the theory discussed in the preceding section was made using the
analog-computer circuit of figure 17. The sinuscidal input was generated
by solving the equation

x" + 0°x = 0 (96)

on amplifiers 7, 8, and 9. This was done rather than using an external-
function generator in order to reduce the noise on x and its deriva-
tives. Generating these sine waves in the computer gave the additional
advantage that x' and x" were available as outputs of integrators.
This allowed the effect of x' and x" filtering delays to be studied
separately because these integrator outputs could be used directly with
no filtering. (Such techniques could usually not be used in an actual
system, of course, because input derivatives are not always directly
available.)

The first experiments were made using integrator outputs for both
x' and x" with no delays and the results are shown in figure 20(a).
Notice that the error is very small but is roughly a sinusoid at the
input frequency. This error is only 0.1 percent of the input amplitude
and is small enough that it was attributed to computer error. Also, in
this and the following experiments the chatter error was too small to be
noticeable in the figures because no intentional relay delays were intro-
duced and the inherent delay was very small.

Only x' filtering: To study the effect of x' filtering delay
alone, x' was derived by actually differentiating x in amplifier 17

OoOrHH=E
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and filtering it as shown in figure 17. The second derivative x" was
again taken directly from an integrator.

~t

Solving equation (93) with X" - x" =0 and taking X' - x' from
equation (94), the error (neglecting chatter amplitude) is

2
n

e = coslotT - & - Z Tiqw - © (97)
\j(l ‘ 2>2+k22
- ko 1w n

i+

where

klU.)
6 = arc tan
2

L i

Experiments were run using various values for A, k;, o, and T,y

and the error amplitude was measured and compared with the values given
by equation (97). A typical computer response is shown in figure 20(b)
and the results are tabulated in table V(a). The "normal” values of Kkj
and kp used gave optimum response to a 20-volt step input. Notice that
the agreement between theory and experimental results is very close. The
widest gap of ll-percent difference occurs in run 9 with kp = 0.588

(the large 1ll-percent error of run 5 can be discounted because the error
was so small that it was difficult to measure and was comparable to the
computer error of figure 20(a)). This rather significant difference is
not too surprising because a very large change (by a factor of T.5-to 1)
had to be made in ko in order to mske an appreciable effect on the

error amplitude. This means that any dependence that the error might
have on k, other than as taken into account in equation (97) would have

a good opportunity to affect the result. For example, the presence of
only a very small unintentional time delay T, in the x" circuit
could account for the discrepancy of run 9, because the error with Top
present depends strongly on ko.

Only x" filtering: Using an integrator output to obtain x' with
no filtering and finding x" by actually differentiating x twice in
amplifiers 3 and 4 and filtering as shown in figure 17 with condensers 03

and C) and resistors Ry and Rz, the effect of x" delay alone was studied.
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Solving equation (93) with X' - x' = O and using X" - x" from
equation (95), the theoretical error is

-k z To1
m

e = sina)'r-ﬂ---e-ZTgiw-e (98)

(1 - 2)? 4 g2 S o

Experimental results are again compared with the a.mplitudes‘ given theo-
retically and the results are tabulated in table V(b). The results agree
quite well,

o

Both x' and x" filtering: Both x' and x" were found by
differentiation of x as indicated above, and experiments were run to
find the effect of x' and x" delays occurring simultaneously.

In this case, the theoretical error is found by substituting both
equations (94) and (95) into equation (93) where the right-hand side
then becomes

2 1 1 3 T 1
~k 1 Aw XTH cos{wT - 5 - §leiw + kzﬁm ZTei sinjwtT - 5 - §Z:Tgim
m

n n m

x %1 o ao
= -kjAwoy cos<<n-r -3 - —2-> - K0, COS((DT - -2—-> (99)

where a) = Z Tlia) and an Z T2ia).

n m

Considering these two terms as vectors rotating at angular velocity w

a Q,
and displaced from each other by the angle % + -?l - —2‘2, they can be

added into a single vector by using the law of cosines and the magnitude
of the sumation vector is

W = (a2 4 (kphean)” - 2 (gt ) (o) (‘e‘ -2 %

(100)

OFr - =
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also

lo? Q. Q .,
7 1 2 . 1 2 1
COS(= = — 4+ =] = sin|{— - &£} = = - 101
(2 > (2 2 ) 201 - ) (101)

Using this summation vector as the forcing term on the right-hand side
of equation (93), the error in this case is

2 2 2. 22
Au)dkl a1 + ko“as 0" + klkgwalq2<a2 - “l)

[ ) + w2

The comparison of experimental error amplitudes with those predicted by
equation (102) is given in table V(c). The results are consistent within
about 6 percent.

e

cosQnT - uz) (102)

Verification of theory for other inputs.- The analog-computer experi-
ments of the previous paragraphs demonstrate that equation (95) is valid
for sinusoidal inputs; that is, for sinusoidal inputs, at least, the non-
linear control system of equation (88) can be replaced by an equivalent
linear control system as given by equation (93) during a region of chatter
operation. But for a linear system, the law of superposition holds;
therefore, equation (93) should be applicable to any input as long as
chatter operation is maintained. A verification of this reasoning was
made with the analog-computer simulation.

The inputs chosen to demonstrate superposition were two sinusoids
at different frequencies and amplitudes. The experiments were conducted
so that the only essential filtering delay was 0,10 unit of machine time
in the x' circuit. It should be mentioned that this delay was made
intentionally large so that the error would be large and easy to analyze.
Figure 21(a) shows x and e for x = 15 cos(0.4467) and figure 21(b),
for x = 1.00 cos(2.831). As taken from these experimental results, the
error amplitudes are 0.15 volt and 0.2 volt, respectively. Computation
of the theoretical error for these inputs using equation (97) gave error
amplitudes of 0.15 and 0.20, respectively. Figure 21(c) shows x and
e for x = 15 cos(0.446T) + 1.00 cos(2.837). The resulting error is seen
by inspection of the figure to be a simple superposition of the errors for
the separate inputs. Notice that the error for x = 1.00 cos(2.83T) is
larger than that for x = 15 cos(0.4467) even though the input amplitude
is much smaller. This is because the error is proportional to the square
of the input frequency. A similar example of superimposed inputs is
shown in figures 21(d) to 21(f).

Range of inputs that give chatter response.- It is rather curious
to notice that, so far in this discussion of response to slowly varying
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inputs, no mention has been made sbout the coefficients of the differential
equation of the system being controlled. The entire response during -
chatter operation has been determined by the coefficients in the switching-
function argument and the delays required to measure input and output
derivatives. At this point the nature of the differential equation being
controlled is important and will be used to determine the range of inputs
for which chatter operation is insured. For the case where the input is

a simple sinusoid, the limit at which chatter operation ceases will be
called the "breakdown frequency." Frequencies below this breakdown fre-
quency are what have been referred to as slowly varying inputs. This
frequency depends on the amplitude of the sinusoidal input and on the
coefficients of the differential equation of the system being controlled,
and only very slightly on the coefficients of the switching function.

DK — =

Before going into the procedure for predicting the breakdown fre-
quency, some mention should be made about operation around this frequency.
When the breakdown frequency is reached, the system truly breaks down in
that the error amplitude suddenly becomes very large; it becomes larger
than the input amplitude. When operating just below the breakdown fre-
quency, only a small disturbance is required to make the system break down.
Because of this, care had to be taken to insure that e = e' =e" =0
at the start cof each computer run. At lower frequencies it was not nec~-
essary to make the initial error and its derivatives zero because the
system would "pull in" to chatter operation quite easily. Near the .

breakdown frequency the system pulls in more quickly if k; and ko
are increased, but chatter operation continues if k; and kp are then

decreased, except for a very narrow range of frequencies near breakdown.
It should be at least mentioned here that depending on the magnitude of
the initial error and the values of kj and kp, the system may never

pull in, even if the input frequency is zero. Such possibilities are
treated in chapter 5 of reference 3 where chatter response is referred
to as "after end point motion." This type of consideration is also dis-
cussed later in the present report.

It is also interesting to notice that right up to breakdown, the
expressions developed to predict the error amplitudes give quite good
correlation with experimental results (see fig. 22).

The explanation of breakdown is, of course, that with a finite value
of N the system can reproduce only a finite frequency band before satu-
ration occurs., This saturation is best seen if figure 23 is developed
as follows:
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The differential equation is

ym + 2§Qy" + 92}" = _¢(e,e',e")N (103)

where @(e,e',e") 1is the switching function (in the previous examples

= -sgn(e + k1e' + koe")). A general switching function @ 1is specified
here because what follows applies for any function ¢. Integrating equa-
tion (103) once gives

v+ 2t0y' + 0%y = -Ble,e',e")NT + C (104)

The purpose of the control function is to drive the process in such
a way that e = e' = e" = 0; that is, so that y = x, y' = x', and

y" = x". 1In particular, it is desired that

y' o+ 260yt + 02y = x" + 260x' + 0°x (105)

This particular expression is chosen for comparison because the left-
hand side is given by equation (th) and the right-hand side can be com-
puted for a given input. For a simple sinusoidal input of the form

x = A sin wr the right-hand side, indicated by as in figure 23, becomes

a sinusoid at the input frequency as shown in the figure. The saw-tooth-
type function in this figure is the left-hand side of equation (105) as
given by equation (104) (designated q; 1in the figure). It is built up
of a series of straight lines of slopes N and must be continuous

because each term on the left-hand side of equation (104) must be
continuous.

During chatter operation the system has the power capacity to make
e =e' =e" =0 Dbecause it does chatter. A more convenient way of
locking at this is to state that during chatter operation the system is
capable of making q ~aq in figure 23; but, by inspection, this is

possible only when the slope of- q) is greater than the maximum slope
of g, That is, the limit of chatter operation is defined by

(106)

Notice that equation (106) is identical to the inequality found in dis-
cussing equation (47) in the section "Relay threshold imperfection" of
third-order systems. For x = A sin wT equation (106) becomes

m 1" 2.1
N> |x™ + 200x" + 0% lmax

N> A \f(aé - wﬂg)e - hrha2yh (107)

In the limit where equation (107) is an equality, it can be solved for
we, the breakdown frequency. This was done for various values of the
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equation parameters and the results compared favorably with experiments
as shown in table VI. Notice that, in all cases, the experimental break-
down frequency is greater than the theoretical breakdown. This occurs
because experimental breakdown was defined by the chatter completely
ceasing, the error becoming extremely large, and only two switchings
occurring per input cycle. At frequencies slightly below this the error
was reasonably small (as approximately given by equations (97) and (98))
and breakdown was not thought to have occurred even though chatter opera-
tion occurred for only part of each input cycle. ©Such operation is
béyond the frequency limit given by equation (107), but it is very d4if-
ficult to observe experimentally at just what point "partial chatter"
begins. One could preassign some arbitrary time between switchings such
that when this time interval is exceeded complete chatter operation is
said to have stopped, but this would be cumbersome and would not give

the same physical significance as complete breakdown, which is, after
all, what is being investigated. This also explains why the theoretical
error agrees quite well with experiment only until the theoretical break-
down frequency is reached (see fig. 22).

Reduction of Errors Due to Filter Lags for Both
Second- and Third-Order Systems

It was mentioned earlier that the reason for the errors discussed
here is that the lags encountered in finding x' and x" are not the
same as those encountered in finding y' and y". The validity of this
statement can be seen by investigating the lags in x' and y', for
example. Consistent with the notation already used, let X', ¥', and
€' be the actual delayed terms which are available for use in some
switching function. Then by definition

g = X' - § (108)

x'(t - Tyr) - y'(t - Ty ) (109)
Further manipulation of this expression yields
& = x(t - Tyr) = 't - Ty) x'(t - Tgr) - ¥'(t - Ty)
or
e =e'(t - Ty') - x'(t - Tyr) + x'(t - Tyt) (110)

which for Ty' = O reduces to the first of equations (92).

OHKH =
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Substituting equation (110) into equation (91) and assuming for the
moment that &" = e*

[}

e(t) + kpe'(t - Tyi) + kpe"(t)

. Bpx'(t - Tya) - kgx'(t - T,0)  (111)

or

]

e(t) + kje'(t) + kpe"(t)

klEc'(t - Tyi) - x'(b - Tx:ﬂ +

klE'(t) -e'(t - Ty.jJ (112)

But even in the case when undesirable errors do occur they are
always quite small as compared with the amplitude of the input and the
second term on the right-hand side of equation (112) can be neglected as
compared with the first term. (Although e' and e" due to chatter
oscillation may become larger than x' and x" because the chatter
frequency is very high, the values of e' and e" averaged over several
chatter cycles are much smaller than those of x' and x", respectively.
It is this "average" error that is being considered here.) If this is
done, it can be seen by inspection that the magnitude of the driving term
in equation (112) depends very strongly on the difference between Tyr

and T,. and disappears if Tx‘ = Ty'. In this case it is necessary to

reconsider the second term on the right-hand side, but this would still
give a very small error as compared with the errors when Tyt # Tyr.

An identical argument can be used to demonstrate how different lag
times for X" and ¥" affect the error in the same way.

In many cases some of these delay times can be adjusted to be very
nearly equal so as to minimize the error. 1In the analcg-computer setup
this involved forming x' - y' and then filtering the difference rather
than filtering just the noisy x'. This gave the same delay on both x!'
and y' and reduced the error considerably. For a third-order system
this procedure can only be used to a very small extent in the e" circuit
because y", the highest derivative in the switching function, is fluc-
tuating to a considerable amplitude at the chatter frequency. This means
that any delay on y" acts to a large extent as a relay delay. The first
derivative of the output y' also oscillates at the chatter frequency,
but the amplitude of this oscillation is much smaller than the y" chatter
oscillation (see fig. 24 noting that Yehatter = -€chatter). In general,

the delay on the highest derivative output feedback should be delayed as
little as possible (the (n - 1)st derivative for an nth-order system) while
the other derivatives should be delayed by as close to the same amount as
the corresponding input derivative as possible. It was noticed that, for
the third-order system simulated here, the errors caused by x" filtering
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lags were quite small because the value of ko that gave good response
to step inputs was small (k2 = 0.10) and o’ was usually small and never .
very large before breakdown occurred.

Third-Order Theory in Laplace Notation

The equivalent linear system of equation (93) can easily be put into
Laplace transform notation, which for many engineers is a more useful
form. Equation (93) is then written

O+ =

1 2 1
e(l + kip + kp°) = -k px[——=— = 1| - kK p°%x[———o - 1) (113)
(1 + kpp + K5p2) = -y (1 + TP ) R VR

for the case where x' and x" are given by equations (89) and (90)
with the approximation

D ~ p (114)
(1 + Tllp)(l + Tlgp) C .. (1 + Tlnp) (1 + Tnnp) t

where
T, = }Z T4 (115)

and similarly for Typ,. This approximation will not give exactly the

same results as the previous approximations but very nearly the same
results for small values of Tli and TEi'

Simplifying equation (113), it becomes

2 b
kT P kT

e(l+klp+k2p2)=x 1 nn + 2 P
1+ Tnnp 1+ Tppp

(116)

For the case where T, =0 (only x' filtering), the closed-loop trans-

fer function of the equivalent linear system is

(l + Tnnp)(l + kp + k2p2) - lennP2

(117) -
(1 + Tnnp)(l + kp + k2p2)

A
X
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For the case where Tp, = O (only x" filtering), the closed-loop
transfer function of the equivalent linear system is

)
) (l + Tmmp)(l + KD + k2p2)

%l

STEP RESPONSE OF THIRD-ORDER CONTACTOR SYSTEM

WITH TWO COMPLEX ROOTS

In the section entitled "Considerations for Designing and Comparing
Contactor Systems" it was shown that contactor systems which at first
might appear to be quite different are actually quite similar. It was
also shown that a large part of the response of a contactor system is
chatter response in which the driving term rapidly changes sign at a
frequency determined by the imperfection of the relay or similar nonlinear
device. The period and amplitude of* these chatter errors were then deter-
mined in considerable detail and a further consideration of chatter
response, but from the standpoint of finding the errors that result from
filtering delays rather than from relay imperfections, followed in the
next sections. A more complete study of the response of a contactor sys-
tem must include response in which chatter does not occur. Unless specific
information is available as to the nature of the expected input, dis-
continuities of the error and its derivatives are the most satisfactory
choices of situations for which the response is not entirely chatter
response. That is, if a system gives a chatter response with small error
and is able to recover from input or error discontinuities quickly, then,
within its saturation limitation, it will respond very well to a random
input.

Optimum Response

In recent years there has been a great deal of work done on the
response of contactor systems to step inputs. Most of this work is cen-
tered around the study of optimum response, which has been defined
as the response that reduces the error and its derivatives to zero in the
minimum time after a step command. A more complete definition of optimum
response can be given in terms of the error phase space.

For a system described by an nth-order differential equation, the
coordinates of this error phase space are the error and its derivatives
up to the (n - 1)st. The information given by the coordinates of any
point in this phase space is sufficient to define completely the state
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or phase of the error motion. As the motion of a system proceeds in

time, the error-state point traces out a path in the phase space. For “
any given system, this path or trajectory is defined by the system dif-
ferential equation. The phase space is completely filled with possible
trajectories for each system, each trajectory depending on the initial
conditions of the motion. If a system is to be optimum, it must be

capable of taking the error-state point from any location in the error

phase space into the origin along the system's trajectories in the mini-

mum time, within the limitation of the system's saturation values.

Second~order example.- A simple second-order example will demonstrate
the definition of the error phase space. One of the equations studied by
Bushaw in reference 4 is

OKH X

y" = -af(e,e') (119)

where a represents the saturation value of the system and ¢ is a
switching function which takes on the values 1 or -1 and is to be deter-
mined to glve optimum response. Physically, this equation may be inter-
preted as the equation of a frictionless motor whose shaft position is

y. The saturation constant a would then be the ratio of the saturation
torque of the motor to the rotor inertia. The block diagram for this )
simple system is given in figure 25. The differential equation for the
error is found by substituting y" = x" - e" into equation (119), and
for a step input, where x" =0, it is

e" = af(e,e’) (120)

To find the error-phase-plane trajectories, this equation can be
written

et de' ap(e,e") (121)

which for ¢ = 1 or -1 (one cannot integrate over a discontinuity in @,
of course) can be integrated immediately to

e'? = 2ale - eg)p (122)

where ey 1is the integration constant. This equation gives two families

of parabolas with their vertices on the e axis, one family concave
upward for @ = 1 and the other family concave downward for ¢ = -1, as
shown in figure 26. All motion must be along one or more of these
parabolas.

If the shaft position is at y = O and a step input command of
X = X, 1is suddenly applied, the corresponding initial value in the error -




(ol Sl S »

L9

phase plane is at a point xg units out from the origin along the
e axis, as indicated by the point e,. Bushaw shows ihat to reduce

this error to zero with no overshoot (that is, to move into the origin)
in the minimum time, the motion should move along the ¢ = -1 trajectory
that passes through point ey (path e, Q) until the @ = 1 trajectory

that passes through the origin (are 0S) is intersected. At this point,
¢ should change to 1 and the motion will proceed along this "zero
trajectory” until the error is zero. Similarly, for a negative step
input, @ should change from 1 to -1 at the zero trajectory OV. The
line SOV is called the optimum switching line. For any point above this
line @ 1is to be taken as -1 and below it, @ = 1. Thus for this
example

¢opt = -sgn(2ae + e'le'|) (123)

In this example, the above procedure intuitively gives the proper optimum
response. In order to move the motor shaft through an angle xg in the
minimum time with no covershoot, cne simply applies full torque until half
of the step is recovered and then applies full reverse torque so that the
system will be at rest when the error is zero. Bushaw further shows,
however, that no matter what the initial conditions are, that is, no
matter at what point the motion originates in the e,e' plane, optimum
response is obtained by switching according to equation (125) as one can
easily see by starting at arbitrary points and following acceptable tra-
Jjectories into the origin. Therefore equation (123) gives optimum response
for this system also for a ramp input x' = x'y with any initial

conditions.
Bushaw also discusses optimum response for the equation
y" + Dy' = -af(e,e') (12k4)

The optimum switching line for this equation is a curve quite similar in
nature to the parabolas found for equation (119). It is again formed by
the two halves of the two zero trajectories of the differential equation
on which motion proceeds toward the origin (see appendix D). Again,
this switching line is optimum for motion originating from any point in
the error phase plane, but it is not optimum for a ramp input x' = x'o.
This is because y' is present in the differential equation so that
when the differential equation in e 1is formed, an x' +term appears on
the right-hand side, thus

e" + De' =x" + Dx' + af(e,e’) (125)

This means that although x" = O for a ramp input, a bias of Dx'y
exists on the forcing side of equation (125), thus making invalid the
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considerations that were made in finding the optimum switching line
assuming x" = x' = 0. This difficulty could be avoided by feeding x'g -

into the device that forms the switching line in such a way as to change
the scale factors in the upper and lower half planes as a function of
X'ag. This would provide optimum response for ramp.-inputs even with the

Dy' term present in the system equation (see appendix D). The authors
have, however, found no reports of the use of such a scheme,

Discussion of third-order system.- In the second-order examples of
optimum response Jjust given, only one switching is required to go from
any point in the error phase plane into the origin unless, of course,
the initial point happens to lie on a zero trajectory in which case no
switching is required. If the homogeneous equation has a restoring force
term, more than one switching may be required (see ref. 8, p. 155).
Bogner and Kazda, in reference 9, show that for the nth-order equation

OrH=x

ale _ Ag (126)
at"

The number of switchings required to return the error and its derivatives
to zero in the minimum time from any point in the error phase space is

n - 1. Therefore, for a third-order system of this type, two switchings
are usually required in order to give optimum response. This holds for -
a more general type of third-order system also, but no proof of this

statement will be given here. Another example will serve to show how

these switchings occur and what sort of switching function ¢ is required

to give optimum response. A simplified description of the pitching

motion of a missile or aircraft is given by a third-order equation and

has received a great deal of attention in recent years. In terms of
analog-computer units where y 1is a voltage (the conversion from problem

to computer units is given in appendix C) such an equation can be written

vy o+ atay" + sz' = —Qevra¢ (127)

The procedure for finding the optimum switching function for a
third-order system is merely an extension of that used for second-order
systems. There is considerably more difficulty in the third-order case,
however, because one must work in a three-dimensional error phase space
rather than a phase plane, and the switching function must depend on
e" as well as on e' and e. To begin with, equation (127) must be

changed into an equation for the error e by substituting y = x - e:

2 2

e + 2t0e" + Q%' = X" + 2L0x" + O°x' + OV 0 (128)




O HH=E

51

To find the optimum response to a step input, one can take

x" = x" = x' =0 so thal equation {128) beeomes
m " 2 2
e’ + 2tae" + 0%t = 07V P (129)

The first step in finding the optimum switching function for such
an equation is to notice that only two space curves which are a solution
to equation (129) pass through the origin of the error phase space, one
for ¢ =1 and the other for § = -1. This means that when the error-
state point passes from some initial position into the origin (i.e., the
error and its derivatives are reduced to zero) its last bit of motion
must be along one of these zero trajectories. Therefore, the motion
must be such that the path of the error-state point intersects one of
these curves and furthermore, it must intersect one of the two branches
that goes toward the origin. It can be proven (see ref. 10) that, in
order for the response to be optimum, the system must switch when the
zero trajectory is intersected.

This indicates that the last (or second for this third-order example)
switch point is on the zero trajectory. Figure 27 shows two views of the
zero trajectories for equation (129) with { = 0. The broken lines are
the branches of the zero trajectories that lead away from the origin for
positive time and the solid lines lead toward the origin. Notice that the
solid lines are symmetrical about the origin, one side being with ¢ =1
and the other with @ = -1. For this example, the second switch point
would occur on one of the solid branches. In order to find the first switch
point, notice that motion between the first and second switch points must
be along a trajectory which terminates on the solid zero trajectories. It
is not difficult to visualize that the sum total of all the possible tra-
Jjectories that terminate on the solid zero trajectories defines a surface
in the error phase space, because only one trajectory that is a solution of
the differential equation can pass through any given point on the zero tra-
Jectory. There is only one rather than two because the trajectory that
terminates on the solid zero trajectory must have ¢ of the opposite sign
of the zero trajectory, since a switching occurs at the intersection.
Again, this surface is symmetrical about the origin, one half of it ter-
minating on each branch of the solid zero trajectory. Also, in order to
get off this surface (i.e., to go away from the origin in negative time),
one must again follow a path with opposite ¢, that is, return to the
same sign of ¢ that the corresponding solid zero trajectory has. This
means that the first switch point occurs on this "switching surface." It
is not difficult to visualize that the sum total of all trajectories that
terminate on this surface fills the entire phase space.

The sequence of events, then, in driving the state point from any
position in the phase space into the origin is as follows: The motion
proceeds with ¢ =1 or @ = -1 (depending on which side of the
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switching surface the initial point lies) until the switching surface

is intersected; here ¢ changes sign and the motion proceeds along the

switching surface until the solid zero trajectory is intersected; and

at this point another switching occurs and the motion proceeds into the

origin. No rigorous proof 1s given here that this sequence indeed gives
optimum response. For more details see the paper by Rose, reference 10.

Bypassing this point of rigor, the next step is to find the equation
of the switching surface. Returning to the example of equation (129)
with { = O, the differential equation is

Tl 2 . ne
e" + Q%' = Qv _ @ (130)

The general solution of this equation is

e =A+ Bcos Qr + C sin Q1 + PV, 7 (131)

To find the zero trajectories, the condition to be imposed is that the
state point must pass through the origin at the end of the motion which,
for convenience, will be defined by r = 0, that is,

e(0) = e'(0) = e"(0) = 0. 1Imposing these conditions, the parametric
equations of the zero trajectories are

Vra \
e =0 VogT - - sin QT
e' = ¢(V V... cos QT) (132)
- ra -~ ‘ra
e" = PV,.,Q sin Qr ,

In order to find the initial conditions for the trajectories that inter-
sect these zero trajectories, that is, for the trajectorles that carry
the state point from the first to the second switch point, one merely
proceeds out from the origin along the zero trajectory in negative time
until the second switch point is reached., If the time of travel on the
zero trajectory is Tg, then the "initial" conditions desired are found

by substituting =15 1into equations (132):
N
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To avoid confusion, only half of the switching surface will be
found, the other half being symmetrical about the origin. Consider the
half that terminates on the @ = 1 =zero trajectory. Then the general
solution for the next to last trajectory is

e = Al + Bycos ar + Cisin Q1 - Vpgr (154)

Using this equation with 1 = O at the second switch point (i.e., when
T = -Tg in egs. (132)) the constants A;, By, and C; are found by

imposing equations (133) at + = 0. The parametric equations of the
next to last trajectory are then ’

V 2V
e = 'Vra<Ts + T) + —%2 sin Q(Ts - T) + —X8 gin Q 7
e' = V., - V,.gcos Q(Ts'- T) + 2V, cos QT > (135)
e" = -V, Q sin Q(TS - T) - 2V, 0 sin Qt
»

with parameter 7. If one considers the entire family of such trajec-
tories, one trajectory for each value of Tg, the result is the optimum
switching surface. Equations (135) can be considered, then, as the
parametric equations of half of the optimum switching surface, with

parameters 75 and T. As the equations are set up, Ty ‘takes on posi-

tive values (negative time) and T takes on negative values (also nega-
tive time). These parameters could be eliminated to find a single equa-
tion between e, e', and e" that would represent the optimum switching
surface, but this will not be done here because the authors wish only to
give the reader a visual picture of an optimum switching surface and to
outline the steps involved in finding one.

The use of such a switching surface gives optimum response for

equation (127) only for a step input although there is no restriction

on the initial conditions; that is, the initial state point can assume

any position in the error phase space. If x' and x" were fed into

the device which forms the switching surface, and operations corresponding
to the scale factor changes suggested for a second-order system were made,
this system could be made optimum for step inputs of velocity and acceler-
ation as well as for step inputs of position.

Comparison of Optimum and "Linear" Switching

The problem of finding the optimum switching surface for equation (129)
is not too difficult. Perhaps the most convenient way of doing it would
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be to actually go through all the steps outlined above (using eq. (130)
rather than eq. (129)) with the problem set up on an analog computer.
Negative time could be simulated by changing the signs of the appropriate
terms in the differential equation, and the resulting trajectories could
be recorded. The problem of building g device which forms this complicated
switching function, however, is considerably more difficult. Three-
dimensional function generators are complicated and cumbersome and con-
siderable cost would be involved in developing one small enough to be
carried in an aircraft. "Linear" switching as used in equation (47) is,
on the other hand, quite easy to obtain in an actual installation as can
be seen by the simple circuits involved in figure 17. The obvious ques-
tion is, just how much is lost in using linear switching? To answer this
question, step response times for optimum and for linear switching were
found using an analog-computer simulation.

Optimum response time.- Fortunately, it was not necessary to create
an optimum switching surface in order to find optimum response times
because linear switching gives optimum response if the switching coceffi-
cients k; and k, are set to specific values for each step. For any

single optimum response, only two points on the optimum switching surface
are used for switching so that all that is required for optimum response
for a specific input is a surface which passes through these two points.
Since linear switching gives switching on a plane through the origin of
the error phase space, one merely adjusts the angle of this plane so

that it passes through the two optimum switch points for each input.

The values of kj; and kp that give optimum response for each

step were found very quickly by trial and error. The value of e versus
e' was observed on an oscilloscope and k; was adjusted after each

computer response to a step input until after two switchings the error
was reduced to very nearly zero. Then e versus e'" was observed and

ko, was adjusted until e was also reduced to zero after two switchings.

After this, only small changes in k; and kp had to be made to insure
that e, e', and e" were all reduced to zero after two switchings.
Figure 28(a) shows plots of k; and k, versus step height for 02 = 2.79
and QEVra = 47.3 volts with { as a parameter. TFigure 28(b) is a
similar plot for 2 = 1.35 and 0%V, = 23.2 volts.

Figure 28(a) shows very clearly that k; and ko repeat after a

certain step height for ¢ = 0. The value of the step height at which

the repetition begins is equal to the voltage through which the error
passes during one period of the system's natural frequency. In figure 27,
of the zero trajectory for ¢ = 0, this corresponds to the error spanned

by one loop of the trajectory spiral of 2= Y%Q. The calculated value of

65.5 volts checks very well with the experimental value of 67 volts. The

O H=
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reason for the repetition in k; and kp 1is that for step inputs larger

than this value the error-state point comes in on a spiral, path a in
figure 27, on which no switchings are required until the error is within
the first loop of the zero trajectory. Somewhere within this loop, the
error-state point comes to rest with e' = e" = O as shown by point R.
This occurs because all of the step-response experiments were made with
e"(0) = e'(0) = O, that is, the motion always started at rest. Motion
from this point on is the same as if the motion had started at point R,
hence the switching requirements are the same. Also, all the trajectories
that are solutions to equation (130) with e'(0) = e"(0) = 0 are cycloids
identical to the zero trajectories except that they are displaced in the
error phase space, so that the exact repetition of ki and k2 results.

That no switchings are required until the error is less than 2= Xgﬁ

follows because the differential equation is such that, providing the
error starts at rest, the error velocity is always less than 2V,g, and

this velocity can always be built up or reduced to zero within one loop
o{ the spiral. The acceleration is similarly bounded.

For ¢ #£ 0, k1 and k, do not repeat but rather damp out to con-

stants for large inputs. This occurs because, for large inputs, the
oscillatory motion damps out due to the presence of the damping and the
system travels toward the origin at the runaway velocity Vypg. This

means that no matter how large the input step was, and no matter what

the initial conditions were, by the time the error-state point is close
enough to the origin for switching to be required the state point comes
in on the same line, namely, path b in figure 27, defined by e' = Vi,
and e" = 0 for a negative step input. For a system with damping then

v
(the damping need not be very large, as seen in fig. 28(a)) if on L&
is rather small relative to the magnitude of the expected step inputs,
there is no particular advantage in using optimum switching over linear
switching because optimum response results for these inputs in either
case.,

Figure 29 gives a plot of optimum response times versus step height,
again with { as a parameter. These response times were found using
the analog computer. A quick one-point check of the accuracy of these
plots can be made by checking the response time for the case where ¢ =0
to a step input of 2x —%é volts, For this particular situation, the
response time is merely the period of the natural vibration or Eﬁ/ﬂ.

For figure 29(a), ©2n/Q = 3.76 seconds which checks very well with the
response time of 3.75 seconds shown in the plot. For figure 29(b) the
comparison is 5.40 to 5.45 seconds, respectively.



Response time with linear switching.- Figure 30 shows the response
times with linear switching for the same system discussed above. ZEach
curve of response times for linear switching in these figures is for a
fixed pair of values of k; and kp. The parameter shown on the curves

is the step voltage for which the specific combination of k; and ko

gives optimum response, hence the linear switching curves are tangent

to the optimum response time curve at these values of step height. In
determining the response time with linear switching, time was measured
from the instant the step was imposed to the time when e and e' were
zero and e" was less than a small value. In some respects this crite-
rion might have made the figures somewhat misleading because many times
the error was very small and was approaching zero asymptotically or in
an oscillatory fashion some time before e, e', and e" all became
zero, An example of this, figure Bl(a), shows the response to a step
input of 60 volts for linear switching optimized at a step input of

30 volts. In this response, the error was quite small a few tenths of

a second before the coptimum response time had elapsed, although e, e’,
and e" were not all zero until about a second later, and during this

second the error never did become very large.

Two combinations of kj; and Kkp, one which gave optimum response

for a 15-volt step input and the other for a 30-~volt step input, are
shown in figure 30(a). Also shown is the curve of optimum response times
for ¢ = 0. In general, for step inputs greater than the step for which
ky and k, were optimized, the response was first oscillatory (vefore
chatter) and then sluggish (chatter operation, as exemplified in

fig. 31(a)). For inputs less than the optimized step, the response was
sluggish as shown in figure %1(b). For the linear switching optimized

at 30 volts, the largest difference between the response time of this
system and optimum response time occurs at 60 volts for the renge of
inputs studied. But recall that the error in the linear switching
response to a 60-volt step passed very close to zero before the optimum
switching time had elapsed and it became only slightly greater before

it was reduced to zero (see fig. 5l(a)). Therefore, if this small under-
shoot is not detrimental for the system application, the large difference
in response times indicated in figure BO(a) is not a good comparison. )

In figure %0(b) for ¢ = 0.3 the difference between optimum
response and response with linear switching optimized at 30 volts is so
small that for many practical purposes it could be neglected.

Quasi-Optimum Response

Between optimum switching with its complicated switching surface
and linear switching which is optimum for motion originating only from
special points in the error phase space there would seem to be much room
for a compromise switching function. For lack of a better name, such a
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compromise system will be called "quasi-optimum" switching. The possible
number of such schemes that can be tried has no end, but all of them are
merely attempts to form a switching function which approaches the shape
of the optimum switching surface without the necessity of using a three-
dimensional function generator. (One significant example of what might
be called quasi-optimum response is treated in detail by Schmidt and
Triplett in ref. 11.)

Figure 28(a), which shows how k; and ko must vary with step
height in order to obtain optimum response, gives an insight as to one
possibility for a quasi-optimum switching function. Notice that the
percent change in ko required for a given change in step height is
much greater than the percent change required in kj;. This observation
suggests that one might use a variable rather than constant ko so0 that
the switching function takes on the form

@ = -sgn[é + kje' + kg(e,e')e"] (136)

As it stands, this switching function is no improvement over optimum
switching as far as reducing complications is concerned because a three-
dimensional function generator would be required to form kg(e,e').
Therefore ko may be made a function of either e or e', but not of
both, or the purpose would be defeated.

Recall now that in the brief discussion of optimum versus linear
switching it was concluded that, if the system has natural damping pres-
ent, the gap between optimum and linear switching is not very wide (see
fig. 30(b)). In discussing quasi-optimum switching, then, it will be
most beneficial to concentrate first on the case where { = O. For this
case, experiments were made by taking ko as a function of e, but not
much success was obtained. Experiments with kp taken as a function
of e' were considerably more successful. An explanation of the deter-
mination of the function kg(e‘) will immediately show why this function
worked well while k, as a function of e was unsatisfactory.

In forming kp either as a function of e or as a function of e',
the data in figure 28(a) obviously had to be modified so that ko could
be plotted against e or e' at switching rather than against initial
step height, because, once the motion is in progress, a switching func-
tion has no way of knowing what the initial conditions were. To make
this modification, e and e' at the first switch point were determined
for each step input with optimum response, using the computer. The
desired ko as a function of e'g, for example, was then plotted point

by point by taking the value of ko, for a given step input from fig-

ure 28(a) and plotting this against the e' at switching found for the
same step height. The resulting function is shown in figure 32.
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The values of ko shown in figure 28(a) give optimum response only
if kp remains constant throughout the response. If kp is taken as

a function of e' or e, then it will vary continuously throughout the
response, If this is the case, how can the function found by the above
procedure be expected to give optimum response? In the case of kg(e)

as determined above, the response is indeed not optimum, but for k2(e')

the response was found to be optimum or very nearly so for any step in
the test range of from O to 60 volts. This optimum response results
because of the symmetry of the optimum response trajectory for ¢ =0

as shown in figure 33. The lower curve is the e,e' projection of a
typical optimum-response trajectory and the upper curve is the e,e"
projection, The sharp corners in the e,e" projection occur, of course,
at the switch points. Notice that, since the e,e' projection is sym-
metrical about an error equal to half of the step height and the switch
points are similarly symmetrical, the value of e' at both switch points
is the same. Therefore, even though ko, varies continuously throughout

the motion, it always repeats itself at the switch point so that as far
as the switching is concerned, ko might just as well have been a con-

stant equal to the value of kp at the first switch point. But in the

above procedure, kp was chosen such that at this first switch point it
takes on the proper value to give optimum response if it were allowed

to remain constant. The motion resulting from using this function for

ko 1is not exactly optimum except for selected step values because k)
was not made a function of e', but, since ki does not change much with
step height, the motion was very close to optimum.

The circuit used to form the product k2(e')e" is shown in figure 3k.
The function kg(e') was formed with a diode function generator whose

break points are indicated by crosses in figure 32. The circles are data
points taken from figure 28(&). In order to utilize a wider range of the
function generator, the input to it was taken as 2e' rather than e'.
The scale factor on the output EE of the function generator was taken

as 50 volts/secg, that is, k2 = 5Ok2. Unfortunately, the multipliers

available for these experiments had a considerable degree of drift and
nonlinearity, but slight modifications of the function kg(e') compensated
for the nonlinearity, and the drift was not serious enough to affect gen-
eral conclusions about the experiments.

As was mentioned earlier, this switching scheme gave very good
response for step inputs. The value of kj used for these experiments

was an average value of kj = 0.66 which gives optimum response for a

step of 30 volts. TFor steps different from 30 volts, the response was
not optimum but very nearly so. The derivatives e' and e" were pro-
perly reduced to zero after two switchings, but there was a small under-

shoot, of the order of 1/2 volt, depending on the step. This residual

OHH=
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error was reduced to zero in a short time by chatter operation, just as
in the case of linear switching. TFor practical purposes then, it seems
that for step inpuls this swiichiing scheme is just as effective as opti-
mum switching.

If the motion does not originate on the e axis in the error phase
space (i.e., e'(0) = e"(0) = 0), however, the response with this scheme
is not necessarily optimum. It is usually oscillatory and sometimes
even unstable, This instability was eliminated by adding a constant to
the function k2(e') given in figure 32. But adding this constant made
the response to motions originating on the e axis sluggish as in the
example with linear switching shown in figure 31(b). That is, in this
respect the present scheme is no improvement over linear switching.

This result might have been expected, however, because with only one
free coefficient in the switching function, namely ko, one can hope to

find nearly optimum response only for points originating on a given sur-
face. In this case, this surface is defined by the trajectories that
pass through the e axis.

If the features of the system inputs are such that the expected
disturbances usually give motion that originates near the e axis, then
a scheme such as this represents a reasonable answer to the problem of
finding a relatively simple switching function which gives quasi-optimum
response. Similarly, if the inputs have another region in the phase
space where nonchatter motion is expected to originate, a different func-
tion kg(e') may be developed. Quasi-optimum response then, seems to
have meaning and application mainly when some type of information about
the input is available.

CONCLUSIONS

The following results and conclusions were cobtained from this inves-
tigation of second- and third-order contactor contrecl systems:

1. A detailed examination of a great variety of system configura-
tions shows that during chatter operation, that is, when the output is
varying slowly enough that there is a high-frequency hunting due to relay
imperfections, the resulting error is quite small and depends much more
strongly on the relay imperfections than on the system configuration.

In order to make a comparison among several control solutions to a given
problem, one must therefore study responses for which chatter does not
occur, the step input being the most commonly used. That is, the required
tolerances on the relay imperfections for a contactor system are found
by studying chatter operation, and the determination of a control scheme
or switching function is made on the basis of step response.
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2. The chatter errors due to relay imperfections were found to have
two basic components for the second- and third-order systems studied.
One component is a high-frequency oscillatory error, and the other is a .
direct-current bias error which exists when the driving forces for posi-
tive and negative error are unequal. The ratio of these driving-force
magnitudes is a function of the input. For small time-delay or threshold
imperfections occurring separately, the oscillatory component of error
is proportional to the square of the imperfection for a second-order
system and to the cube of the imperfection for third-order systems. The
bias errors depend on lower powers of the imperfections.

3, In addition to these errors that are closely associated with the
relay imperfections, another error exists during chatter operation. It
is caused by the filtering lags that result in forming the error deriva-
tives used in the switching function. For sinusoidal inputs to a system
with linear switching (i.e., switching according to a linear combination
of the error and its derivatives) it was found to be at the input fre-
quency and was explained by using an equivalent linear system. Applying
the law of superposition to this equivalent linear system, the equivalent
transfer function becomes valid for general inputs that give chatter
operation. This linear transfer function depends only on the filter
circuit constants and the coefficients in the linear switching function,
while the coefficients of the differential equation of the controlled
process determine the input limitations for which chatter occurs.

OrH=

4. Most of the work mentioned above was done on systems with linear
switching, which were found to give quite good response. However, a
great deal of work has been done by various people in recent years on
optimum contactor systems. These systems give the minimum response time
for step inputs and are therefore superior to systems with linear switching
for such inputs. For a second-order system, the cptimum switching func-
tion is a curve in the error phase plane which is relatively easy to build
into a system., For a third-order system, however, the switching function
required to give optimum response determines a surface in the three-
dimensional phase space and its realization would be quite expensive and
cumbersome in an actual installation. To determine how much is lost by
going to linear switching in order to avoid this difficulty, the step
response of a third-order system with two complex roots was studied in
detail with an analog-computer simulation. The results show that, for
certain rather wide ranges of combinations of natural damping of the
controlled process and step input amplitude, there is very little differ-
ence between optimum and linear switching response, For example, with a
natural damping ratio of (¢ = 0.3, the maximum difference between linear
and optimum switching response time over a wide range of step inputs was
about 10 percent. Also, the error during this last 1O-percent interval
of time is very small so that, in many practical applications, there is -
no significant difference between linear and optimum switching response.
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For the case where { = 0, the difference between optimum and linear
switching response is more significant, but in this case it is possible

to form a quasi-optimum switching function which requires a function
generator using one rather than two independent variables. This function
gives very nearly optimum response for a wide range of step inputs but

is unsatisfactory for step responses that start with large initial velocity
or acceleration. It is suggested that other quasi-optimum schemes be

investigated in the future which give nearly optimum response for motion
not starting at rest. '

Stanford University,
Stanford, Calif., December 1k, 195T7.
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APPENDIX A

COMPARTSON OF TWO SWITCHING-FUNCTION ARRANGEMENTS

Consider two control systems whose equations are

y" 4+ 2Dy' + y = 0.625 sgn e + 0.375 sgn e’ (A1)

and

Or =

y" + 2Dy"' + y = sgn(e + ke') (5)

It will be shown here that during chatter operation and in response
to step inputs, equation (5) gives a response which is superior to that
of equation (Al). From this, it can be concluded that it is more advan-
tageous to switch according to equation (15) than (14). Full-saturation
values are used as coefficients on the right-hand sides of equations (A1)
and (5) while the driving coefficients in equations (13) and (14) or (15)
depend on y and y'. It was stated in the main text that it is better
to use the full-saturation quantity as the driving coefficient; therefore,
it is valid to use the simpler expressions of equations (Al) and (5) for
the comparison here.

The coefficients used in the right-hand side of equation (Al) are in
the same ratio as those found to give good response in reference 1 by
using equations (13) and (14). The coefficients' sum was set equal to
unity so that equations (Al) and (5) would have the same saturation value.

Consider first the comparison of these two equations during a region
of satisfactory response. For simplicity, let the input x = 0. Let the
relay delay for each system be Tgr = 0.01. The error limit cycle for

equation (Al) can be computed using the method presented in reference 1.
A plot of the resulting limit cycle is shown in figure 55. The maximum
error for this limit cycle is e = 0.0017. With the same value of time
delay, the chatter error for equation (5) is determined using equa-
tion (38) with k = 0.3:

0.% - %(0.01)

50T = 0.0000517 (A2)

emaxep = %(1)(0.01)2
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This error is an order of magnitude smaller than the maximum error of
0.0017 found for equation (Al) and it can be concluded that during
regions of chatter or satisfactory response a system which switches a
single quantity according to sgn(e + ke') 1is superior to a system that

switches two quantities according to the sign cf e and e' separately.

A comparison of these equations for response to discontinuities,
such as a step input, shows equation (5) to be superior in this respect
also. Equation (Al) is constructed so that no force reversals can occur
until the error changes sign, but for equation (5) the driving force
reverses at some time before the error passes through zero and hence the
velocity at zero error is decreased. In fact, for one particular step
amplitude the velocity will be zero when the error becomes zero and the
response time will be optimum. This is the value of the step at which
the phase-plane trajectory intersects the switching line at the same
point at which the switching line intersects the optimum switching curve
as given in reference L. Even if the response of equation (5) is not
optimum, it is faster than that given by equation (Al) because maximum
torque is applied gt all times while equation (Al) applies only one-
quarter of the maximum torque for those quarter cycles where the absolute
value of the error is decreasing. Also, torque reversals for equation (5)
occur before the error passes through zero, as was mentioned above.
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APPENDIX B
SEMIGRAPHICAL METHOD FOR FINDING CHATTER ERRORS

In the section "Approximate Expressions for Relay Chatter Errors"
a semigraphical method was briefly described for integrating the simpli-
fied error differential equation to find the chatter errors. The reader
who has not had much contact with the methods of strength of materials
will perhaps appreciate the more detailed discussion of the steps
involved in finding the error by this method given herein.

Second-Order Time-Delay Imperfection

The differential equations which give rise to chatter errors are

e’ = ay if e+ ke' <O

(B1)
e’ = -ao if e+ ke'>0

with the stipulation that the device which performs the coperation
sgn(e + ke') has a symmetrical time delay Tg. Figure 36 shows the

graphical construction of the chatter error and its derivatives for
this equation. 1In order to develop these plots, recall that the chat-
ter errors resulting from equations (Bl) are periodic and therefore e
and its derivatives must repeat in each cycle. If time is measured
from the start of interval T, the periodicity requirement on e' is

e'(0) = e'(TL + To) (B2)

or
T1+T2
Jf e"dr =0 (B3)
0

Graphically, equations (B2) and (B3) indicate that the periodicity
requirement applied to e' 1is equivalent to requiring that the net area

unier the e" curve should be zero. This means that 21Ty = apTo.
Similarly, the periodicity requirement applied to e 1is

Or+-=x
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j;) : e' dr = 0 (BY)

That is, the net area under the e' curve must also be zero. In fig-
ure 36 an integration constant of - % ajTy mst be added to e' to
satisfy this condition.

The only unknowns remaining are the integration constant for e and
the period of the motion. The two equations necessary to find these
quantities are the switching criterion e + ke' = O to be applied at
the times indicated by the broken lines in figure 36 which are Tgr sec-

onds before the actual switch points. In order to apply this condition

in the first interval the error is first expressed by choosing the left
side of the interval as the time origin:

e = % 3172 - % a;Tq1 + C (B5)
e' = aj7 - % a1 Ty (B6)

The switching criterion is then
(e + ke')Tle_TR =0 (B7)

By substituting equations (B5) and (B6) intc equation (B7) one obtains
1
C+3 al(k - TR)Tl + £ a)Tp? - ka T = 0 (B8)

Choosing the time origin at the beginning of the second interval,
the error in this interval is

1
e = - % a272 + 5 8gTor + C (B9)

1

e' = -apT + % asTs (B10)
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The integration constant C must be the same in both interval Tq

and Tp, (as implied in equations (B5) and (B9)) in order that the peri-
odicity condition imposed on e is not affected.

The switching equation is

(e + ke') =0 (B11)

T=T2-TR
which, on substitution of equations (B9) and (B10), becomes
1 1 2 =
C - £ ay(k - Tp)Tp - § asT? + kaply = O (B12)

Recalling that asTo, = ajTy, equations (B8) and (Bl2) are immediately
solved for C and T as

C = (al - a2>'I‘R(k - % Th) (B13)

VITe

and

1
aj + 8.2 k - 5 TR
a3 k - TR

Ty = (B1k)

To find the peak error in the first interval, the error derivative
of equation (B6) is set to zero and the time at peak error is

Ty (B15)

(=
|
el o

Similarly, equation (Bl0) is set to zero to find the time at peak
error in the second interval (remembering, of course, that this time is
measured from the start of the second interval):

e = 3 Tp (B16)

If these times are substituted into equations (B5) and (B9), respec-
tively, and m 1is defined by

m = a/ap (B17)

O+ Hx
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the peak errors are given by equations (43):

1 o1+ n\2[% - 3 T 1 1 -m 1
®peakp = -~ 3 a1Tg ( - ) —— -3 alTR( m ) k-5 TR)

5 (43)

Third-Order Threshold Imperfection

Although the semigraphical method for finding chatter error for a
second-order system is not much of an aid over just straight substitution
of initial conditions of the motion, in the third-order case it is a very
definite help in that it points the way to a systematic solution of what
would be eight simultaneous equations if one were to proceed along the
lines of formally matching end conditions. The simplified third-order
equations which give rise to chatter oscillations are

e= Ny if e + kje' + koe" <0

(B18)

e = -N, if e + kje' + kee" >0

where N and No are positive. The chatter occurs because the device

which performs the operation sgn(e + kje' + kpe") has a threshold of

operation €, which is assumed symmetric in the positive and negative
directions. The graphical integration of equations (B18) with such an
imperfection is shown in figure 24k. Notice that again this figure is
broken up into its component parts to facilitate integration. Only the
repeated plot of e gives a composite figure. The ordinate at any
point for the other plots must be taken as the sum of the ordinates of
each curve in that plot. The procedure in going from e™ to e" to e’
follows exactly as that in going from e" to e' to e in the second-
order case except that the constant of integration of e' here is found
by imposing the condition of periodicity on e. That is, in order to

make the integration of e' add up to zero at the right side, a constant

NiT
of —%El(Tl - Tp) had to be added to e'. Going through the steps, the

value at the right side of curve (3), which is the integral of curve (1),
is
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g = 7 Ny + % MT% + £ M 2o (B19)

Similarly, the value of curve (4), which is the integral of curve (2), at
the right side is

m, = -1 MT (11 + To)° (B20)

Curve (5) is a triangle to be added to curves (3) and (4) such that at
the right side

hy + hy + hs = 0 (B21)

Solving equation (B21) one finds that

hs = §%§l(rl - 1) (1 + Tp) (B22)

The slope of this triangle is ﬁlzl(rl - T2) which is the integration
12

constant for e', shown by line (6) in figure 2k.

As in the second-order case, the only unknowns remaining are the
integration constant C71 for e and the period of the motion. These
are found by imposing the switching criterion at the beginning and end
of interval Ty.

(g + Kje' + kge")T=O = -€ (B23)

and

kie' ‘) = B24
(e + ke’ + kpe =Ty € ( )

where, from curves (3), (4), and (5), e 1is given in this interval by

N T
e = % NlT5 - % N T 72 + 121621 - TQ)T + Cy (B25)

O+ r+x

-
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Using equation (B25), equations (B23) and (B24) become

¥

N;T
111 1
Cy + ky -?<Tl - T2) - 5 kpTiNy = -e (B26)
N N T
1 1°1 =
c1 - = T12T2 + K —Tz—(Tl - T2) + L kTN = € (B27)

Adding equations (B26) and (B27), the integration constant C1 is found
immediately to be

N,T
=11 - -
¢y = = EPITQ 2k, (1y Tg):l (B28)

Also, recall that the periodicity condition on e" is

Ny

T, (B29)

il iy
i
]

If equation (B26) is subtracted from equation (B27) and the result com-
bined with equation (B29), one obtains an equation for Ty:

-3 kT = 2€ B30
15 T1 2Ty = % (B30)

i

In this equation n is always less than 1 (one is free to define
Ny < N5, and interpret the results accordingly), € is an imperfection

which is made as small as possible for a particular installation, and
although N; is the smaller driving term it is much greater than e.

Therefore the value of T found from equation (B30) will be very small,
thus supporting the assumption that the chatter frequency is much higher
than the frequency of the controlled process. Since Ty 1s small, the

first term of equation (B30) may be neglected relative to the second and
an explicit expression for Tj; can be given:

- (B31)
Nikp :
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To find the peak values of e 1in the interval T;, the deriva-

tive e' from equation (B25) is set to zero. The resulting equation

can be solved for Ter, the time from the start of interval T; to the
peak error:

Ter - L1 . (lsmn
5 2 \k (6> (832)

Notice that if Tep 1s to fall within the interval Ty (the only inter-

val for which the equation applies) then n must be less than 1. This
is the reason that all of the equations were developed with n < 1. This
does not give any restriction on the generality of the results because
Ny can arbitrarily be defined as the smaller driving force, and if it is

applied in the negative driving interval a minus sign must be attached to
the error and its derivatives as found here.

If one develops an equation similar to equation (B32) for the inter-
val Tp, it will be found that n must be greater than 1 in order for
the peak error to fall within the interval. Therefore, both error peaks
fall in the larger time interval (during the application of driving force
N, in the convention used here).

When the values of 7T, of equation (B32) are substituted into

equation (B25) where Cj is taken from equation (B28), the resulting
expression for the peak errors is surprisingly simple:

epeake  _ J_<? + 2n>5/2 k@ -n) (B33)

_;lfil+2n
3 2L 3 1274
N Ty

This equation can be put into a more useful form if T; is eliminated
by using equation (B31):

5/2 3 k 2

_ -« 1{1 + 2n 1l /e l -n®l/e

€peak,. = 1 _( > __> - _____.__<__> (B}A)
cake 3 3 N 2Kk2 3 N, ko

Also, if equation (B18) is derived from a system of the type given by
equations (48) and (49), then

Nl + N2 = 2N (65)

Orr=x
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so that equation (B34) is more properly written
_-1+2n3/2<1+n)2 1/_e__5_(1-n2)1_<;i2
“peake T+ ( 5 ) en 5N2\k2) én /N (ke) (©9)

It should be mentioned that the bias term (the last term in equation (65))
is not equal to the integration constant C; because part of the expres-

sion for C; 1is absorbed intc the oscillatory error term.

Third-Order Time-Delay Imperfection

If the same method for finding chatter error due to time delay that
was used in the second-order case is applied to the third-order case, the
resulting equations become very cumbersome. Since the approximations
made to arrive at the simplified error differential equation given in
equation (B18) required that the imperfections be small, it would be wise
to seek a more simplified version of the chatter error due to time delay
that takes advantage of the fact that the time delay is small. To do
this, it will be assumed from the start that a time delay can be treated
as a variable threshold (this in itself is not an approximation).
Denoting by F the argument of the switching function, its time deriva-
tive is

F' = e' + kle" + kge'" (68)

At the instant before a switch point from -No to Ny (i.e., just before
the start of interval Tjp) this becomes

N1Ty ~
F' = _i-é—(Tl - Tg) - kl(%- T1N1> - koNp = -kolNp (69)

The values of e', e", and e"™ wused were taken directly from figure 2.
This is valid because the entire development of figure 24 except the
evaluation of Cj; and the period applies equally to threshold or time-
delay imperfections. That is, the switching equations are not applied
until one comes to the point of evaluating T; and Cj.

The approximation made above will eliminate the term corresponding
to '



T2

which appeared in the second-order case (egs. (43)). But for small
values of TR, the forthcoming equations will give a good indication of

the chatter error. For larger values of TR the effect of this term
can be studied for the case where Ny = No. In this case the chatter

error can be found by using equation (66) without making the approxima-
tion in equation (69).

Using the approximate slope of the switching-function argument
given by equation (69), the corresponding equivalent threshold at the
start of interval Tp; 1is

er = -k2N2TR (BBB)
Similarly, the equivalent threshold at the end of this interval is

eq; = ko TR (B36)

Substituting these equivalent thresholds into equation (B26) and (B27),
respectively, one obtains two equations for C; and T;. Eliminating

C1, the equation for Ty 1is

o
Ny 3 N1
- —_— T + knN4T = k~N-AT 1 4+ — 1
Ton, L oN1 Ty 223( Ng) (T1)

Or, again neglecting the cubic terms,

T = (1—;£)TR (B37)
The equation for Cy is
NiTy 1
C1 = 5 l:TlTe - le(Tl - T2>] - 5 kpN2TR(1 - n) (B38)

Notice that the first of the two terms on the right-hand side of equa-
tion (B38) is identical with C; as given by equation (B28). Also, the

derivation of Tor

and the accompanying comments apply equally well here

O+ H+H =




because these considerations were madc

Therefore, the error peaks as given in
this case if the addition to C; that
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for T; and C; in general.

equation (B33) carry over to
is given in equation (B38) is

added. That is,
1
“peakp _ _ _1_(1 + 2n>5/2 _ k(1 -n) 5 keN2Tg(1 - n) (B39)
24
NyT42 > 12Ty MTy°
W
1
1 This additional bias term is due to the unsymmetric equivalent thresholds,
0 and drops out, as does the other bias term, if n = 1. Using the value
of T, given in equation (B57), the peak chatter errors for a small time
delay TR are
e -1l +2n 5/2(1 + n)BN To? - (l - n)(l + n)2k N+To2 -
peakT + ol 3 1‘R 12 n 141°R
(l - n>k2NlTR (BLO)
. 2n

Or, for the case where N; + No = 2N,

3/201 4 n\2 3
IS b 1+ 1
openeg = 7 (5 2) C(HE2) 3 e

e

- ng)klNTRg _ (%—=~n)k2NTR

+ n
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APPENDIX C

CONVERSION OF AIRCRAFT-PITCHING~MOTION EQUATION

TO COMPUTER UNITS

Throughout the text, the example used as a third-order controlled
process is a simplified equation of the pitching motion of a missile or
aircraft. This equation is

3 3
S+ 2wy S 4+ oyt 22 = -y Vra¢ (c1) .

where t 1s real time, ¢ is a switching function which takes on the
values t1, 6 is the aircraft-flight-path angle measured from level
flight, w, 1s the undamped natural frequency of the radpid incidence

adjustment mode (the more exdct equation is of fourth order with two
natural frequencies: the incidence adjustment or high-frequency mode,
and the phugoid or low-frequency mode), and vyg is the angular "runaway

velocity." The coefficient of the switching function represents the
effect of some control surface on the motion, and the surface takes on
only two positions, either full up or full down. In order to make the
equation third rather than fourth order, perturbation of level flight
had to be considered with the change in forward speed neglected. The
definition of a "runaway velocity'" comes from the observation that, if
the control surface is allowed to assume one of its positions for an
indefinite length of time, then after the transients die out, the air-
craft flight angle will be changing at an angular velocity vpg:

d_e.=+v'

T ra (c2)

In order to study this equation on a differential analog computer,
it was decided to scale time and angle so as to use a convenient voltage
range and to make the inherent delay of the relays used very small in
terms of the natural frequency of the machine equation. Defining y as
the dependent machine variable and T as machine time, the scale factors
are

y = a6 T=at Q= EE (c3)




O+ H+H =

>

and equation (Cl) becomes

2

wy? g2 2 42
- dy 2ty 22— —JX + wae o dy _ -waevra¢ (ch)
2

Or, using primes to denote differentiation with respect to T,

y"+ 2tQy" + 0%y’ = -N@ (c5)
where

V
N~ T rafy _ = 02V,

The parameters N and Q could be made unity by making the proper
adjustments of ay and 3y, but it was desired to study the effect of

varying o, and vy,, due to changing aircraft speed and altitude, so
that @y and ay were merely adjusted to give convenient machine
units.
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APPENDIX D
OPTIMUM RESPONSE OF SECOND-ORDER SYSTEM WITH DAMPING

Optimum response of the equation

y" + Dy' = -afi(e,e’) (124)

was discussed briefly in the section "Step Response of Third-Order
Contactor System With Two Complex Roots." To find optimum response for
this equation for step or ramp inputs, the equation must first be changed
into an equation for the error e by substituting y = x - e, noting
that x" =0 and x' =x'g for a ramp input.

O+ H =

e" + De' = Ix'y + af(e,e') (Dp1)

To find the phase curves for equation (D1), it is first transformed into
a differential equation in e' and e by using the identity

e" = ! d_e_'.. (DE)

Equation (D1) then becomes

1
et 281 4 pe' = x'g

dc ap(e,e’) (D3)

+

or, separating variables (noting that ¢
interval)

Constant over any integration

=D de

(D)

|
o]
0]
+
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Equation {D4) can be integrated directly for ¢ = 1 or -1 (one

cannot integrate over a discontinuity in ¢, of course). The integra-
tion must be broken into two parts in order to avoid the singularity at
e' =x'y + (af/D) so that

Die - eg) = €' + (x'o + %Q)loge<e' -x'y - %Q-j) e' >x'y + %q (D5a)
-D(e - ep) = e' + <¥'o + %?)loge(-e' + X'+ %g) e' <x'g+ %? (D5b)

where e, 1s the integration constant.

The zero trajectories for @ =1 and @ = -1 are shown in fig-
ure 37(a) for x'g > 0. The solid line is for @ = 1 and the broken

line, for ¢ = -1. Also shown in the same figure are branches on the
other side of the singularities at e' = x'g t (a/D). All other tra-

Jectories are curves parallel to these and shifted along the e axis
according to the integration constant e,. The equation of the zero

trajectory for ¢ =1 1s found by taking equation (D5b) with e, eval-
uated by first setting e = e' = 0. The resulting zero trajectory is

' )‘l-e'
-De = e' + N log, —— (D6)
M
where
)\l=%+x'o -%<X'O<%

The values of x'g given are those values for which the system will not

diverge. For values of x' outside this range, inspection of equa-
o]

tion (D1) shows that the system will diverge because the term containing
the switching function no longer determines the sign of the right-hand
or driving side of the equation.

If the scale factors of the phase-plane axes are changed by A
(i.e., e= Mt and e' = xlgl') the parameter AN{ can be eliminated

in equation (D6) and it becomes
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Dey = &' + loge (L - &) (D7)

Similarly, the zero trajectory for ¢ = -1 1s found by taking equa-
tion (D5a) with e, evaluated by first setting e = e' = O.

A+ e
-De = e' - )\2 lOgee_—- (D8)
Ao
where
- 8 a a

Changing the scale factors in the phase plane by e = k2§2 and

1

e' = \oko', equation (D8) becomes

Do = £y' - loge (1 + ') (D9)

Figure 37(b) shows the ingoing branches of the unmodified zero tra-
Jectories given by equations (D6) and (D8). Bushaw (ref. 4) shows that
the curve made up by these two branches is the optimum switching curve.
For points above, ¢ is to be taken as -1, and, for those below, ¢ = 1.
Four types of optimum responses from arbitrary points are shown in the
figure. But this switching gives optimum response only for the specific
value of x'O for which it was plotted. Figure 37(c) shows the ingoing
branches of equations (D7) and (D9) in which the parameters A and Mg,

which depend on x'y, have been eliminated. In order to plot both branches
in the same figure, it was necessary to take different scale factors for
the positive and negative axes as shown. Since these curves do not depend
on x'y, operation in this distorted phase plane gives optimum response

for any ramp input in the range -a/D < x'y < a/D.

The procedure for providing optimum response for an arbitrary ramp
input is first to form the "normalized" switching curve shown in fig-
ure 37(c). The error and error derivative fed into this function must
then be modified by the scale factor N or Ap, depending upon the
location of the state point. Since the choice of scale factor is not
important in the first and third quadrants, one may switch the scale
factor from A} to Ao according to sgn e or sgn e', whichever is
more convenient. This scheme alsc includes step inputs, of course, as a
degenerate case where N = Ao = a/D.

OHH =
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TABLE I.- COMPARISON OF EXPERIMENTAI AND THEORETICAL SECOND-ORDER
SYMMETRICAL CHATTER-ERROR AMPLITUDES FOR EQUATION (45)

[? = 0.5; a = 40; x = é]

k = 0.5 k =0.25
TR Theoretical | Experimental | Theoretical | Experimental
emaxT emaxT emaxT emaxT
0.025 0.013 0.013 0.013 0.013
.035 026 .023 .029 .026
L0455 045 .045 .050 04T
.055 .070 .072 .080 .081
.065 .098 095 .120 .120
.090 .203 .180 .266 24
.115 348 32 535 L7
.165 .843 .70
215 1.7 1.31
.265 3.43 2.16
315 6.73 3.18

TABLE II.- COMPARISON OF EXPERIMENTAL AND THEORETICAL THIRD-ORDER

SYMMETRICAL CHATTER-ERROR AMPLITUDES FOR TWO EXAMPLES

T 1 Exp. A | Exp. B
3 5 i (a) (b)
0.035 | 0.00057 0.002 0.002
.055 .0022 .010 1006
.065 .0037 .032 .01k
.090 - 0097 Diverge .050
.115 .0203 Diverge .045

O+ =

aExperiment A: x =04
y™ = 4O sgn(e + 0.50e' + 0.10e").

bExperiment B: x = 0; y"'+ 2tQy" +
2yt = 4o sgn(e + 0.50e' + 0.10e");

Q
t = 0.6; 92 = 2.79.
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TABLE III.- COMPARISON OF EXPERIMENTAL AND THEORETICAL CHATTER

W
1 BIAS ERRORS FOR THIRD-ORDER SYSTEM OF EQUATION (L49)
l " . 1"
o Fam (1) + 2tae"(r) + 9Pe'(r) = N, if (e + kpe' + kpe )T_TR < 0;
e™ (1) + 26ae"(7) + %' (1) = -N, if (e + kpe' + kge")T_TR > 0;
02 - 2.79; £ = 0.6; Ny = 40; n = Nl/N?J
i Values of parameters Theoretical .
chatter Experimental
bias chatter
) ky ko n Tg error, B bias - Bex
(a) error, Bex
0.50 0.10 | 0.50 | 0.055 0.066 0.063 0.003
.50 .10 .25 .055 .106 .105 .001
.20 .10 .25 .055 .092 .092 0
.50 .50 .25 .055 A36 43 .006
527 .10 .25 .065 132 .135 -.003
527 .10 .50 115 167 .18 -.013
527 .10 .25 .115 .282 .39 -.108

8Frror B =

+

1

kl(n
12

n

>@_- n2)N; Tg? + % ko(1 - n)NoTR.
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TABLE IV.- COMPARISON OF LOW-FREQUENCY-ERROR AMPLITUDES FOUND IN
ANALOG-COMPUTER SIMULATION WITH THOSE GIVEN BY EQUATION (87)
FOR SECOND-ORDER SYSTEM WITH x = A sin ot

v' + y' = a sgn(e + ke'); the following parameter values are

defined as "normal:"

a = 40 volts k = 0.2k y
A = 20 volts ZE: Ty = 0.5 1
w=1 n 0
Theoretical
Values of error Experimental Error
R parameters amplitude error Q -
un Q ’ amplitude, Qex diiiig:gie,
(a) (1) Rex
1 Normal 0.234 0.27 ~0.03%6 -15
2 Z T,; = 0.10 .468 49 -.022 -5
Tl

3 Wl = L1415 .16 -.018 -13

I o = 0.2 .OkTT .05 -.002 -k

5 = O 5 L .50 -.053 =12

6 0.167 .164 .19 -.026 -16

T 10 L1117 .13 -.023% -20

811 parameters are normal but one listed.

2
KAw™D Ty 4
__m T
“l + k2<n2

PError amplitude Q =




O+ =
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TABLE V.- COMPARISON OF LOW-FREQUENCY-ERROR AMPLITUDES FOUND IN
ANATOG-COMPUTER SIMULATION WITH THOSE GIVEN THEORETICALLY
FOR A THIRD-ORDER SYSTEM WITH INPUT

X = A sin wr

[The following parameter values are defined as "normal:"

02 = 2.79 k; = 0.527 }ZTl, = 0.052
§ N 2%6 kp = 0.079 for T

© ; 0.815 table V(a)

A = 20 k2 = 0.10 for

I

> Tpy 0.29%]
m

(a) System y"' + 2LQy" + Q%y' = N sgn(e + klg' + kge") with only x'

filtering; theoretical errors given by equation (97)

tables V(b) and V(c)

Theoretical .
Values of error Exper;gental Frror
. er r
Run parameters amplitude, amplitude, Q - Qoy difference,
Q Qex percent
(a) (b)
1 Normal 0.350 0.%5 0 0
2 |2 Ty, =0.102 .686 .65 .036 5
n
3 kl =1.05 570 Sk .03 5
L k, = 0.263 .188 184 .00k 2
5 w = 0.407 .0898 .08 .0098 11
6 w = 0.628 211 .206 .005 2
T A =10 175 17 . 005 3
3 k, = 0.213 .380 362 .018 5
9 k2 = 0.588 .488 1436 .002 11

8A11 parameters are normal but one listed.

2
Ta
Akl(l) >ﬁ 1i

v<l - kgng)g + klaw2

bError amplitude Q =




8k

TABLE V.- COMPARISON OF LOW-FREQUENCY-ERROR AMPLITUDES FOUND IN
ANALOG-COMPUTER SIMULATION WITH THOSE GIVEN THEORETICALLY
FOR A THIRD-ORDER SYSTEM WITH INPUT

X = A sin ot - Continued

(b) System y"' + 2tQy" + ng' =N sgn(e + kie' + kgg") with only x"
filtering; theoretical errors given by equation (98)

Theoretical E . tal
R Values of error XPZ£;2in a Error
un parameters amplitude, amplitude Q - Qex | gifference,
Q Q@ ? percent
X
(a) (b)
1 Normal 0.308 0.294 0.01k4 4.5
2 EZ:Tei = 0.192 .20% .19k .009 4.3
m
3 :E:TEi = 0.392 413 .388 .025 6.0
m R
in o = 0.407 .0383 L0375 .0008 2.0
5 o = 0.628 L1431 143 -.002 1.4
6 k, = 1.05 .250 .26k -.014 -5.6
7 k; = 0.263 .330 .29 .035 10.6
8 = 0.25 8Lk 17 Noy(ht 8.8
9 = 0.50 1.995 1.74% .255 12.8
10 A =10 154 .153 .001 .6
11 Normal .308 .296 .012 3.9

a
All parameters are normal but one listed.

AkngE:TEi
b m
Error amplitude Q =

V(l - kgmg)e + kl%mE

OrH=




OHF=x

TABLE V.- COMPARISON OF LOW-FREQUENCY-ERROR AMPLITUDES FOUND IN

ANALOG-COMPUTER SIMULATION WITH THOSE GIVEN THEORETICALLY

FOR A THIRD-ORDER SYSTEM WITH INPUT

X = A sin ot - Concluded
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(c) System y"' + 2¢Qy" + ng' =N sgn(e + klg' + k2§“) with both

x' and X"

filtering; theoretical errors given by equation (102)

Theoretical B . tal
Values of error xperimenta
arameters amplitude error Error
Run p Q ‘ amplitude, Q - Qex | difference,
(a) (b) Qex percent
1 Normal 0.496 0.53 -0.034 -6.8
2|2 Tpy = 0.192 oo 455 -.033 -7.8
m
5|2 Ty = 0.392 .589 .61 -.021 -3.6
m
|2 Ty =0.152 1.105 1.12 -.015 -1.5
n
5 w = 0.407 .103 .107 -.00k -3.9
6] w-=0.628 .265 276 -.011 -b
7 ky = 1.05 654 .666 -.012 -1.8
8 k) = 0.263 .368 .38 -.012 -3.3
9 ky, = 0.25 o7k .91 .06k 6.6
10 ky, = 0.50 2.21 1.92 .29 13.1
11 Normal 496 .53 -.034 -6.8
12 A =10 .24k8 .26 -.012 -4.8

a .
All parameters are normal but one listed.

bError amplitude Q =

2 2 2, 2.2
Amvkl a1” + ko“an“w® + klkgwalagcmg - al)

d(l - k2w2)2 + k%P
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87

w-110
=R

(a) k> 0.

Limit Cycle

(b) k< oO.

Figure 1. Transient response in phase plane for equation (1).
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N\
\NWrky'=0
N\

Figure 2.- Motion after end point A (see eq. (1) with k > 0).

Controlled T'rocess

1_‘)\!\0——’ 1 7
1 —o | p® + 2Dp + 1
|
]
X e
» 1 + kp
Switching Computer

Figure 3.- Second-order followup system.
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Ge p Gs
c R
Relay —Ef—l;‘—— J
p- + 2Dp
Compensating Controlled
S Network Process
0
=
Figure 4.- Series transfer functions used by Kochenburger.
- Imaginary

-GD(AK) Real

1
GC(iw)GS(im)

Figure 5.~ Frequency response in complex plane. Arrows drawn in direc-
tion of increasing w and a.



p + 2Dp + 1

AN
Bn f—x2Dp

\ /
~N—-%__ Switching Computer

Figure 6.- Varied-coefficient scheme.

flyun=0

Figure T.- Response near origin where a more complicated switching func-
tion can be replaced by a straight line.
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Figure 8.- Phase-plane meshwork near origin for various values of a

and b,
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maxe g,

2
aTR

(b) Time-delay imperfections;

Cmaxq ¥ 5

Figure 9.~ Approximations of one-half of the error limit cycleé resulting
from threshold and time-delay imperfections of the type of equa-
tion (18). FPFigure not drawn to scale.
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(a) Assumed wave form for thres-

hold errors.

(b) Actual wave form for thres-

hold errors.
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+— T —fe— T —]

(c) Assumed wave form for time-

delay errors.

(d) Actual wave form for time-

delay errors.

Flgure 10.- Symmetrical chatter-error wave forms for a second-order

system.
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Peak error, v
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4
//j;é—Experiment

//‘
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Time delay T Millisec

R’

Figure 13.- Comparison of theoretical and experimental chatter error for

2
1 2t T 3R
a second-order system. emaxT = = aTp N ; k= 0.5.
© - R
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(a) Assumed wave form for thres- (c) Assumed wave form for time-
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(v) Actual wave form for thres- (d) Actual wave form for time-
hold errors. delay errors.

Figure 1h.- Symmetrical chatter-error wave forms for third-order systems.
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Figure 18.- Bias error for third-order system of equationr(h7) with

{ =0.6, Ny =40, N, =10, k =0.50, k, =0.10,

0° = 2.79,

and TR = 0.055.
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Figure 20.- Response of third-order system of table V(a) to
x = 20 sin 0.63T.
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() x =15.0 cos(0.446é7) + 1.00 cos(2.837).

Figure 21.- Response of third-order system of table V(a) with ky = 0.10

and S—l Tli = 0.10 to sum of two sinusoids.
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(d) x = 15.0 sin(0.4k6T).

(e) x = 2.0 sin(27).

I R R R s B S e e

22ms

10v

(£)

x = 15.0 sin(0.4467) + 2.0 sin(2T).

Figure 21.- Concluded.
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Figure 25.- Simple second-order example of optimum switching.
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Figure 26.- Optimum switching for simple second-order system of
figure 25.
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Figure 27.- Zero trajectory for third-order system of equation (130).
Equations of zero trajectory:
2
n
(%) = Vraesinth
(e' F Vra)2 = Vrazcos'?ﬂ'r
2
e _ 2 2
((T) + (e' ¥ vra) = Vygy
Compare equations of zero trajectory
Vra
e = ¢(vraT ol sin Qr
V. v
g = a5 - T oo o)
with parametric equations of cycloid
. vt
Yy = vot - r sin % -
t
X =r-rcos SO
r
ra -

v
where r—-»—n— and Vo_’vra'
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(a) Response to 60-volt step.
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(b) Response to 20-volt step.

Figure 31.- Response to step inputs of a system described by equation (47)

d for a 30-volt step.

0 and k3 and kp optimize

ith ¢

Wl



118

*gsuodsax unmildo 2ATI 09

W-110

"s3T0A €L = BIAL ‘6lie = U
,@ JO uopjoung B sw Oy 9USTOTJJIS00 BUTYOYITMS =-°2¢ SanBTJg

08~

A fe2
08 09 of 02 0 02~ otr- 09-
A
|
x
gt
fo\ ¢ qutod ®838J O
5\ /o qutod 3yBoaq 8pPOTU X
\\ | Jﬁ/
N
1.z N
~ 0T -2 <
v /
\ —_—
*\\Q A//x
4 N\

\\ m.ﬁ -+ € //
x x

/ 4

e oz +W°
|
¢ 1! oes ‘¢
AT 5 A




16 L

W-110

|
119 |

et

N

Figure 33.- Sketch of two views of optimum step-response trajectory for
equation (130).
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Figure 34.- Schematic diagram of circuit which forms k2(e') to give
quasi-optimum response.
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Figure 36.- Graphical construction of chatter error due to time delays
For explanation of numbers in parentheses
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(c) Ingoing branches of modified zero trajectories of equations (D7)

and (D9).

Figure 37(.- Optimum switching lines for second-order system with damping.
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